For faster navigation, this Iframe is preloading the Wikiwand page for Простейшие дифференциальные уравнения первого порядка.

Простейшие дифференциальные уравнения первого порядка

Материал из Википедии — свободной энциклопедии

Простейшие дифференциальные уравнения первого порядка — класс дифференциальных уравнений первого порядка, наиболее легко поддающихся решению и исследованию. К нему относятся уравнения в полных дифференциалах, уравнения с разделяющимися переменными, однородные уравнения первого порядка и линейные уравнения первого порядка. Все эти уравнения можно проинтегрировать в конечном виде.

Отправной точкой изложения будет служить дифференциальное уравнение первого порядка, записанное в т. н. симметричной форме:

где функции и определены и непрерывны в некоторой области .

Уравнения в полных дифференциалах

[править | править код]

Если в уравнении (1) левая часть представляет собой полный дифференциал, то есть , то такое уравнение называется уравнением в полных дифференциалах (частный случай так называемого пфаффова уравнения). Интегральные кривые такого уравнения суть линии уровней функции , т.е. определяются уравнением при всевозможных значениях произвольной постоянной .

Если в области выполнено условие , то общее решение уравнения (1) определяется из уравнения как неявная функция . Через каждую точку области проходит единственная интегральная кривая уравнения (1).

Если рассматриваемая область односвязна, а производные также непрерывны в , то для того, чтобы (1) было уравнением в полных дифференциалах, необходимо и достаточно выполнения условия

(признак уравнения в полных дифференциалах).

Интегрирующий множитель

[править | править код]

Непрерывная функция в называется интегрирующим множителем уравнения (1), если уравнение является уравнением в полных дифференциалах, то есть для некоторой функции . Число интегрирующих множителей данного уравнения бесконечно.

Функция является интегрирующим множителем уравнения (1) тогда и только тогда, когда она удовлетворяет уравнению

(область по-прежнему полагаем односвязной; уравнение (2) является следствием признака уравнения в полных дифференциалах).

Уравнение (2) в общем виде решается сложнее, чем (1), но для интегрирования (1) достаточно знать один интегрирующий множитель, то есть найти какое-либо одно решение уравнения (2). Обычно ищут решение (2) в виде или , но это не всегда возможно.

Алгоритм решения

[править | править код]

(1)

(2)

(3)

Возьмём (3).1 и проинтегрируем по переменной t:

(*)

Подставим в (3).2:

В получившемся равенстве слагаемые, содержащие t, уничтожатся. Получим: . Проинтегрируем по x и подставим в (*).

Уравнения с разделяющимися переменными

[править | править код]

Если в уравнении (1) , то это уравнение с разделяющимися переменными. Его можно записать в симметричном виде:

  • Решения уравнения с разделяющимися переменными
    • Решения уравнения являются решениями (3).
    • Если область выбрана так, что , то разделив на получим уравнение с разделёнными переменными

Это частный случай уравнения в полных дифференциалах. Для него очень просто получить решение в квадратурах. Интегральная кривая уравнения (3), проходящая через точку , имеет вид:

Пример дифференциального уравнения

[править | править код]

Для улучшения этой статьи по математике желательно: Переработать оформление в соответствии с правилами написания статей.Исправить статью согласно стилистическим правилам Википедии.Оформить статью по правилам.Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
Простейшие дифференциальные уравнения первого порядка
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?