For faster navigation, this Iframe is preloading the Wikiwand page for Принцип аргумента.

Принцип аргумента

Материал из Википедии — свободной энциклопедии

Контур C изображён чёрным, нули f — синим, а полюса — красным. В данном случае .

Принципом аргумента в комплексном анализе называют следующую теорему:

Теорема. Если функция мероморфна в замыкании некоторой односвязной ограниченной области с гладкой границей и не имеет на её границе ни нулей, ни полюсов, то справедлива следующая формула:

[1],

где и  — количества соответственно нулей и полюсов функции в , учтённых каждый с его кратностью, а  — изменение аргумента при обходе вдоль контура области (ориентация контура стандартная).

Доказательство

[править | править код]

Пусть , причём функция голоморфна в точке и не равна в ней нулю (точка из области ). Тогда

.

Так как 1-форма голоморфна в точке , её вычет в этой точке равен нулю, и вычет формы в точке равен , то есть он равен порядку нуля (или минус порядку полюса) функции в этой точке.

Используя эти соображения и основную теорему о вычетах, интеграл в формулировке теоремы можно вычислить явно:

.

Таким образом, первая половина формулы доказана.

Чтобы доказать вторую половину формулы, проведём простой разрез внутри области , проходящий через все нули и полюса функции , и выходящий на границу области в некоторой точке . Область с разрезом \ теперь односвязна, и замкнутая 1-форма не имеет особенностей внутри неё и на контуре , и значит точна в , то есть допускает там первообразную . Функция будет первообразной для формы также и вдоль контура области с выколотой точкой . Поэтому можно применить формулу Ньютона-Лейбница:

.

Так как , то функция с точностью до константы совпадает с некоторой однозначной ветвью логарифма функции , и поэтому справедливо равенство:

.

Подставляя это выражение в формулу Ньютона-Лейбница, окончательно получаем:

.

Примечания

[править | править код]
  1. Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1976.
{{bottomLinkPreText}} {{bottomLinkText}}
Принцип аргумента
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?