For faster navigation, this Iframe is preloading the Wikiwand page for Цепь Маркова.

Цепь Маркова

Материал из Википедии — свободной энциклопедии

Пример цепи с двумя состояниями

Це́пь Ма́ркова — последовательность случайных событий с конечным или счётным числом исходов, где вероятность наступления каждого события зависит только от состояния, достигнутого в предыдущем событии[1]. Характеризуется тем свойством, что, говоря нестрого, при текущем настоящем состоянии системы, её будущее состояние не зависит от прошлого. Названа в честь А. А. Маркова (старшего), который впервые ввёл это понятие в работе 1906 года.[2]

Цепь Маркова с дискретным временем

[править | править код]

Определение

[править | править код]

Последовательность дискретных случайных величин называется простой цепью Маркова (с дискретным временем), если

.

Таким образом, в простейшем случае условное распределение последующего состояния цепи Маркова зависит только от текущего состояния и не зависит от всех предыдущих состояний (в отличие от цепей Маркова высших порядков).

Область значений случайных величин называется простра́нством состоя́ний цепи, а номер  — номером шага.

Переходная матрица и однородные цепи

[править | править код]

Матрица , где

называется ма́трицей перехо́дных вероя́тностей на -м шаге, а вектор , где

нача́льным распределе́нием цепи Маркова.

Очевидно, матрица переходных вероятностей является стохастической справа, то есть

.

Цепь Маркова называется одноро́дной, если матрица переходных вероятностей не зависит от номера шага, то есть

.

В противном случае цепь Маркова называется неоднородной. В дальнейшем будем предполагать, что имеем дело с однородными цепями Маркова.

Конечномерные распределения и матрица перехода за n шагов

[править | править код]

Из свойств условной вероятности и определения однородной цепи Маркова получаем:

,

откуда вытекает специальный случай уравнения Колмогорова — Чепмена:

,

то есть матрица переходных вероятностей за шагов однородной цепи Маркова есть -я степень матрицы переходных вероятностей за 1 шаг. Наконец,

.

Типы состояний

[править | править код]

Цепь Маркова с непрерывным временем

[править | править код]

Определение

[править | править код]

Семейство дискретных случайных величин называется цепью Маркова (с непрерывным временем), если

.

Цепь Маркова с непрерывным временем называется однородной, если

.

Матрица переходных функций и уравнение Колмогорова — Чепмена

[править | править код]

Аналогично случаю дискретного времени, конечномерные распределения однородной цепи Маркова с непрерывным временем полностью определены начальным распределением

и ма́трицей перехо́дных фу́нкций (переходных вероятностей)

.

Матрица переходных вероятностей удовлетворяет уравнению Колмогорова — Чепмена: или

Матрица интенсивностей и дифференциальные уравнения Колмогорова

[править | править код]

По определению матрица интенсивностей , или, что эквивалентно,

.

Из уравнения Колмогорова — Чепмена следуют два уравнения:

Для обоих уравнений начальным условием выбирается . Соответствующее решение

Свойства матриц P и Q

[править | править код]

Для любого матрица обладает следующими свойствами:

  1. Матричные элементы неотрицательны: (неотрицательность вероятностей).
  2. Сумма элементов в каждой строке равна 1: (полная вероятность), то есть матрица является стохастической справа (или по строкам).
  3. Все собственные числа матрицы не превосходят 1 по абсолютной величине: . Если , то .
  4. Собственному числу матрицы соответствует как минимум один неотрицательный левый собственный вектор-строка (равновесие): .
  5. Для собственного числа матрицы все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.

Матрица обладает следующими свойствами:

  1. Внедиагональные матричные элементы неотрицательны: .
  2. Диагональные матричные элементы неположительны: .
  3. Сумма элементов в каждой строке равна 0:
  4. Действительная часть всех собственных чисел матрицы неположительна: . Если , то
  5. Собственному числу матрицы соответствует как минимум один неотрицательный левый собственный вектор-строка (равновесие):
  6. Для собственного числа матрицы все корневые векторы являются собственными, то есть соответствующие жордановы клетки тривиальны.

Граф переходов, связность и эргодические цепи Маркова

[править | править код]

Для цепи Маркова с непрерывным временем строится ориентированный граф переходов (кратко — граф переходов) по следующим правилам:

  • Множество вершин графа совпадает со множеством состояний цепи.
  • Вершины соединяются ориентированным ребром , если (то есть интенсивность потока из -го состояния в -е положительна).

Топологические свойства графа переходов связаны со спектральными свойствами матрицы . В частности, для конечных цепей Маркова верны следующие теоремы:

  • Следующие три свойства А, Б, В конечной цепи Маркова эквивалентны (обладающие ими цепи иногда называют слабо эргодическими):
А. Для любых двух различных вершин графа переходов найдется такая вершина графа («общий сток»), что существуют ориентированные пути от вершины к вершине и от вершины к вершине . Замечание: возможен случай или ; в этом случае тривиальный (пустой) путь от к или от к также считается ориентированным путём.
Б. Нулевое собственное число матрицы невырождено.
В. При матрица стремится к матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
  • Следующие пять свойств А, Б, В, Г, Д конечной цепи Маркова эквивалентны (обладающие ими цепи называют эргодическими):
А. Граф переходов цепи ориентированно связен.
Б. Нулевое собственное число матрицы невырождено и ему соответствует строго положительный левый собственный вектор (равновесное распределение).
В. Для некоторого матрица строго положительна (то есть для всех ).
Г. Для всех матрица строго положительна.
Д. При матрица стремится к строго положительной матрице, у которой все строки совпадают (и совпадают, очевидно, с равновесным распределением).
Рис. Примеры графов переходов для цепей Маркова: a) цепь не является слабо эргодической (не существует общего стока для состояний ); b) слабо эргодическая цепь (граф переходов не является ориентированно связным) c) эргодическая цепь (граф переходов ориентированно связан).

Рассмотрим цепи Маркова с тремя состояниями и с непрерывным временем, соответствующие графам переходов, представленным на рис. В случае (a) отличны от нуля только следующие недиагональные элементы матрицы интенсивностей — , в случае (b) отличны от нуля только , а в случае (c) — . Остальные элементы определяются свойствами матрицы (сумма элементов в каждой строке равна 0). В результате для графов (a), (b), (c) матрицы интенсивностей имеют вид:

Основное кинетическое уравнение

[править | править код]

Основное кинетическое уравнение описывает эволюцию распределения вероятностей в цепи Маркова с непрерывным временем. «Основное уравнение» здесь — не эпитет, а перевод термина англ. Master equation. Для вектора-строки распределения вероятностей основное кинетическое уравнение имеет вид:

и совпадает, по существу, с прямым уравнением Колмогорова. В физической литературе чаще используют векторы-столбцы вероятностей и записывают основное кинетическое уравнение в виде, который явно использует закон сохранения полной вероятности:

где

Если для основного кинетического уравнения существует положительное равновесие , то его можно записать в форме

Функции Ляпунова для основного кинетического уравнения

[править | править код]

Для основного кинетического уравнения существует богатое семейство выпуклых функций Ляпунова — монотонно меняющихся со временем функций распределения вероятностей. Пусть  — выпуклая функция одного переменного. Для любого положительного распределения вероятностей () определим функцию Моримото :

.

Производная по времени, если удовлетворяет основному кинетическому уравнению, есть

.

Последнее неравенство справедливо из-за выпуклости .

Примеры функций Моримото

[править | править код]
  • , ;
эта функция — расстояние от текущего распределения вероятностей до равновесного в -норме. Сдвиг по времени является сжатием пространства вероятностных распределений в этой норме. (О свойствах сжатий см. статью Теорема Банаха о неподвижной точке.)
  • , ;
эта функция — (минус) энтропия Кульбака (см. Расстояние Кульбака — Лейблера). В физике она соответствует свободной энергии, деленной на (где  — постоянная Больцмана,  — абсолютная температура):
если (распределение Больцмана), то
.
  • , ;
эта функция — аналог свободной энергии для энтропии Бурга, широко используемой в обработке сигналов:
  • , ;
это квадратичное приближение для (минус) энтропии Кульбака вблизи точки равновесия. С точностью до постоянного во времени слагаемого эта функция совпадает с (минус) энтропией Фишера, которую даёт следующий выбор,
  • , ;
это (минус) энтропия Фишера.
  • , ;
это один из аналогов свободной энергии для энтропии Тсаллиса[англ.].
служит основой для статистической физики неэкстенсивных величин. При она стремится к классической энтропии Больцмана — Гиббса — Шеннона, а соответствующая функция Моримото — к (минус) энтропии Кульбака.

Практическое применение

[править | править код]
Этот раздел требует существенной доработки. Этот раздел статьи необходимо дополнить и убрать это сообщение.

Одной из первых научных дисциплин, в которой цепи Маркова нашли практическое применение, стала лингвистика (в частности текстология). Сам Марков для иллюстрации своих результатов исследовал зависимость в чередовании гласных и согласных в первых главах «Евгения Онегина» и «Детских годов Багрова-внука»[3].

Примечания

[править | править код]
  1. "Markov chain | Definition of Markov chain in US English by Oxford Dictionaries" (англ.). Oxford Dictionaries | English.. Lexico Dictionaries | English (14 декабря 2017). Дата обращения: 1 апреля 2020. Архивировано из оригинала 25 февраля 2021 года.
  2. Gagniuc, Paul A. Markov Chains: From Theory to Implementation and Experimentation (англ.). — USA, NJ: John Wiley & Sons, 2017. — P. 2—8. — ISBN 978-1-119-38755-8.
  3. Майстров, Л. Е. Развитие понятия вероятности. — Наука, 1980. — С. 188. — 269 с.

Литература

[править | править код]
  • Кельберт М. Я., Сухов Ю. М. Вероятность и статистика в примерах и задачах. Т. ІІ: Марковские цепи как отправная точка теории случайных процессов и их приложения. — М.: МЦНМО, 2010. — 295 с. — ISBN 978-5-94057-252-7.
  • Марков А. А., Распространение закона больших чисел на величины, зависящие друг от друга. — Известия физико-математического общества при Казанском университете. — 2-я серия. — Том 15. (1906) — С. 135—156.
  • Маркова цепь / А. В. Прохоров // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  • Kemeny J. G., Snell J. L., Finite Markov chains. — The University Series in Undergraduate Mathematics. — Princeton: Van Nostrand, 1960
    • Перевод: Кемени Дж. Дж., Снелл Дж. Л. Конечные цепи Маркова. — М.: Наука. 1970. — 272 с.
  • Чжун Кай-лай Однородные цепи Маркова. Перев. с англ. — М.: Мир, 1964. — 425 с.
  • Нуммелин Э., Общие неприводимые цепи Маркова и неотрицательные операторы. — М.: Мир, 1989. — 207 с.
  • Morimoto T., Markov processes and the H-theorem. — J. Phys. Soc. Jap. 12 (1963), 328—331.
  • Яглом А. М., Яглом И. М., Вероятность и информация. — М., Наука, 1973. — 512 с.
  • Kullback S., Information theory and statistics. — Wiley, New York, 1959.
  • Burg J.P., The Relationship Between Maximum Entropy Spectra and Maximum Likelihood Spectra, Geophysics 37(2) (1972), 375—376.
  • Tsallis C., Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52 (1988), 479—487.
  • Рудой Ю. Г., Обобщенная информационная энтропия и неканоническое распределение в равновесной статистической механике, ТМФ, 135:1 (2003), 3-54.
  • Gorban, Alexander N.; Gorban, Pavel A.; Judge, George. Entropy: The Markov Ordering Approach. Entropy 12, no. 5 (2010), 1145—1193.
В другом языковом разделе есть более полная статья Markov chain (англ.). Вы можете помочь проекту, расширив текущую статью с помощью перевода
{{bottomLinkPreText}} {{bottomLinkText}}
Цепь Маркова
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?