For faster navigation, this Iframe is preloading the Wikiwand page for Лемма Накаямы.

Лемма Накаямы

Материал из Википедии — свободной энциклопедии

Лемма Накаямы — важная техническая лемма в коммутативной алгебре и алгебраической геометрии, следствие правила Крамера. Названа именем Тадаси Накаямы.

Формулировки

[править | править код]

Она имеет множество эквивалентных формулировок. Вот одна из них:

Пусть R — коммутативное кольцо с единицей 1, Iидеал в R, а Mконечнопорождённый модуль над кольцом R. Если IM = M, тогда существует a ∈ I такой, что для всякого m ∈ M am = m.

Доказательство леммы. Пусть — образующие модуля M. Так как M = IM, каждый из них представим в виде

, где — элементы идеала I. То есть (где - символ Кронекера) .

Из формулы Крамера для этой системы следует, что при всяком j

.

Так как представим в виде 1 − a, a из I, лемма доказана.

Следующее следствие из доказанного утверждения также известно как лемма Накаямы:

Следствие 1: Если в условиях леммы идеал I обладает свойством, что для каждого его элемента a элемент 1 − a обратим (например, это так, если I содержится в радикале Джекобсона), необходимо должно быть M = 0.

Доказательство. Существует элемент a идеала I, такой что aM = M, следовательно, (1 − a)M = 0, домножая слева на элемент, обратный к 1 − a, получаем, что M = 0.

Применение к модулям над локальными кольцами

[править | править код]

Пусть Rлокальное кольцо, — максимальный идеал в R, Mконечнопорождённый R-модуль, и — гомоморфизм факторизации. Лемма Накаямы даёт удобное средство для перехода от модуля M над локальным кольцом R к фактормодулю , которое есть конечномерное векторное пространство над полем . Следующее утверждение также считается одной из форм леммы Накаямы, применительно к этому случаю:

Элементы порождают модуль M тогда и только тогда, когда их образы порождают фактормодуль .

Доказательство. Пусть S — подмодуль в M, порождённый элементами , Q = M/S — фактормодуль и — гомоморфизм факторизации. Так как порождают фактормодуль , это означает, что для всякого существует , такой что . Тогда . Поскольку сюръективно, это означает, что . По лемме Накаямы (точнее, согласно Следствию 1) Q=0, то есть S=M.

Имеется ещё один вариант леммы Накаямы для модулей над локальными кольцами:

Пусть — гомоморфизм конечнопорождённых R-модулей. Он индуцирует гомоморфизм фактормодулей . Эти гомоморфизмы сюръективны или не сюръективны одновременно.

На основе этой формы леммы Накаямы выводится следующая важная теорема:

Всякий (конечнопорождённый) проективный модуль над локальным кольцом свободен.

Литература

[править | править код]
  • М. Атья, И. Макдональд. Введение в коммутативную алгебру. — М.: Мир, 1972. — 160 с.
{{bottomLinkPreText}} {{bottomLinkText}}
Лемма Накаямы
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?