For faster navigation, this Iframe is preloading the Wikiwand page for Колесо (теория графов).

Колесо (теория графов)

Материал из Википедии — свободной энциклопедии

Примеры графов-колёс
Вершин n
Рёбер 2(n − 1)
Диаметр 2 при n>4
1 при n=4
Обхват 3
Хроматическое число 3 при нечётном n, 4 при чётном n
Свойства гамильтонов
двойственный
планарный
Обозначение Wn
Логотип Викисклада Медиафайлы на Викискладе

В теории графов колесом Wn называется граф с n вершинами (n ≥ 4), образованный соединением единственной вершины со всеми вершинами (n-1)-цикла. Числовое обозначение колёс в литературе не устоялось — некоторые авторы используют n для обозначения длины цикла, так что их Wn означает граф Wn+1 по определению выше[1]. Колесо может быть определено также, как 1-скелет[англ.] (n-1)-угольной пирамиды.

Представление в виде множества

[править | править код]

Пусть задано множество вершин {1,2,3,…,v}. Множество рёбер графа-колеса можно представить в виде множества ((1,2},{1,3},…,{1,v},{2,3},{3,4},…,{v-1,v},{v,2))[2].

Колеса являются планарными графами, а потому имеют единственное вложение в плоскость. Любое колесо является графом Халина. Они самодвойственны — двойственный граф любого колеса изоморфен самому колесу. Любой максимальный планарный граф, отличный от K4 = W4, содержит в качестве подграфа либо W5, либо W6.

В колесе всегда имеется гамильтонов цикл и число циклов в Wn равно (последовательность A002061 в OEIS).


7 циклов в колесе W4.

Для нечётных значений n Wn является совершенным графом с хроматическим числом 3 — вершины цикла можно выкрасить в два цвета, а центральная вершина будет иметь третий цвет. Для чётного n Wn колесо имеет хроматическое число 4 и (при n ≥ 6) не будет совершенным графом. W7 — это единственное колесо, являющееся графом единичных расстояний на евклидовой плоскости[3].

Хроматический многочлен колеса Wn равен:

В теории матроидов есть два особо важных вида матроидов — колеса и вихри, и оба вида являются производными от графов-колес. Матроид k-колёса — это графовый матроид[англ.] колеса Wk+1, а матроид k-вихря получается из матроида k-колеса путём объявления внешнего цикла (обода) таким же независимым множеством, как и его остовные деревья.

Колесо W6 даёт контрпример гипотезе Пола Эрдёша в теории Рамсея — он высказал предположение, что полный граф имеет наименьшее число Рамсея среди всех графов с тем же хроматическим числом. Однако Фаудри и МакКей (Faudree, McKay, 1993) показали, что для W6 число Рамсея равно 17, в то время как для полного графа K4, с тем же хроматическим числом, число Рамсея равно 18[4]. Таким образом, для любого графа G с 17 вершинами либо сам G, либо его дополнение содержит W6 как подграф, в то время как ни граф Пэли, имеющий 17 вершин, ни его дополнение не содержат K4.

Примечания

[править | править код]
  1. Weisstein, Eric W. Wheel Graph (англ.) на сайте Wolfram MathWorld.
  2. Richard J. Trudeau. Introduction to Graph Theory. — Corrected, enlarged republication. — New York: Dover Pub. — С. 56. — ISBN 978-0-486-67870-2. Архивировано 5 мая 2019 года.
  3. Fred Buckley, Frank Harary. On the euclidean dimension of a wheel // Graphs and Combinatorics. — 1988. — Т. 4, вып. 1. — С. 23–30. — doi:10.1007/BF01864150.
  4. Ralph J. Faudree, Brendan D. McKay. A conjecture of Erdős and the Ramsey number r(W6) // J. Combinatorial Math. and Combinatorial Comput. — 1993. — Т. 13. — С. 23–31.
Для улучшения этой статьи желательно: Проверить качество перевода с иностранного языка.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
Колесо (теория графов)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?