For faster navigation, this Iframe is preloading the Wikiwand page for Ионно-циклотронная ловушка.

Ионно-циклотронная ловушка

Материал из Википедии — свободной энциклопедии

Ионная циклотронная ловушка представляет собой один из вариантов масс-анализатора в масс-спектрометрии, в основе которого лежит принцип ионного циклотронного резонанса. Ионы удерживаются магнитным полем в ловушке Пеннинга, двигаясь по кругу под действием силы Лоренца. На первом шаге ионы вводят в ловушку и запирают постоянным электрическим полем, создавая электростатическую яму для них. Затем ионы возбуждают. При действии электростатическим полем с заданной радиочастотой (или импульсом, содержащим множество разных частот), ионы начинают поглощать энергию и постепенно увеличивать радиус вращения до тех пор, пока не столкнутся со стенкой ловушки (если там располагается детектор, т. е. детектируется ток от погибших на стенках ионов, то такой прибор называется омегатрон). Если детектируется наведённый ионами заряд на пластинах, установленных вдоль ловушки, то прибор уже называется масс-спектрометром ионного циклотронного резонанса с преобразованием Фурье. В последнем случае наведённый ионами заряд оцифровывается и записывается, как сигнал, далее делается преобразование Фурье данного сигнала для выявления его частотных составляющих. Частоты жёстко связаны с отношением массы иона (m) к его заряду (z), так что соотношение m/z легко определяется.

Принцип работы

[править | править код]

Явление ионно-циклотронного резонанса связано с движением ионов в магнитном поле. Ионы в статическом и однородном магнитном поле под действием силы Лоренца двигаются по окружности. Циклическое движение может сопровождаться однородным аксиальным движением, образуя винтовую лестницу, или же движением перпендикулярным полю, например в присутствии электрического или гравитационного поля, образуя циклоиду. Угловая частота (ω = 2πf) этого циклотронного движения для заданного магнитного поля В определяется по формуле

где  — заряд иона,  — элементарный заряд и  — масса иона.

Таким образом, электрический заряд с такой же частотой будет резонировать с ионом, имеющим значение , равное

В ловушке Пеннинга используется сильное однородное аксиальное магнитное поле для удерживания ионов в радиальном направлении и квадрупольное электрическое поле для аксиального удерживания. Статический электрический потенциал генерируется посредством трёх электродов: кольца и двух запирающих электродов чашеобразной формы.

Это заготовка статьи по физике. Помогите Википедии, дополнив её.
Для улучшения этой статьи желательно: Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.Проставить сноски, внести более точные указания на источники.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.
{{bottomLinkPreText}} {{bottomLinkText}}
Ионно-циклотронная ловушка
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?