For faster navigation, this Iframe is preloading the Wikiwand page for Дифференцирование тригонометрических функций.

Дифференцирование тригонометрических функций

Материал из Википедии — свободной энциклопедии

Значимость предмета статьи поставлена под сомнение.Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для предмета статьи отсутствуют, по общему критерию значимости. Подробности могут быть на странице обсуждения. (21 июня 2021)
Функция синуса и косинуса в единичном круге
Функция Производная

Дифференцирование тригонометрических функций — математический процесс нахождения производной тригонометрической функции или скорости её изменения по отношению к переменной. Например, производная функции синуса записывается как sin′(a) = cos(a), что означает, что скорость изменения sin(x) под определённым углом x = a задаётся косинусом этого угла.

Все производные круговых тригонометрических функций могут быть найдены из производных sin(x) и cos(x) с помощью правила частного[англ.], применяемого к таким функциям, как tan(x) = sin(x)/cos(x). Зная эти производные, можно производные от обратных тригонометрических функций найти с помощью неявного дифференцирования.

Все указанные функции непрерывны и дифференцируемы в своей области определения[1].

Доказательства производных тригонометрических функций

[править | править код]

Предел sin(θ)/θ при стремлении θ к 0

[править | править код]
Круг с центром O и радиусом r
(r = OK = OA)

На диаграмме справа показан круг с центром O и радиусом r = 1. Пусть два радиуса OA и OK образуют дугу в θ радиан. Поскольку мы рассматриваем предел, когда θ стремится к нулю, мы можем предположить, что θ — это небольшое положительное число, скажем, 0 < θ < ½ π в первом квадранте.

На схеме пусть R1 будет треугольником OAK, R2круговым сектором KOA и R3 — треугольником OAL. Тогда площадь треугольника OAK:

Площадь кругового сектора OAK — это , а площадь треугольника OAL определяется как

Поскольку каждый объект содержится в следующем, мы имеем:

[ Откуда здесь тангенс справа в неравенстве ??.. Авторы, что такое тангенс угла ?.. Это — ДЕЛЕНИЕ длины противолежащего катета AL на длину прилежащего катета OA ! ГДЕ в формуле площади треугольника OAL имеется ДЕЛЕНИЕ стороны AL на сторону ОА ??? Или вас знак "\" в кодировке написанной формулы навёл на это "открытие" ??? ПОЗОРИЩЕ !!! ]

Более того, поскольку sin θ > 0 в первом квадранте, мы можем разделить на ½ sin θ, получив:

На последнем этапе мы [ продолжили ПОЗОРНО писать ЛОЖЬ в правой части неравенства !!! ] взяли обратно три положительных члена, изменив неравенство.

Мы пришли к выводу, что для 0 < θ < ½ π выражение sin(θ)/θ будет всегда меньше 1 и всегда больше cos(θ). Таким образом, чем ближе θ к 0, тем сильнее sin(θ)/θ становится "сжатым" между потолком на высоте 1 и полом на высоте cos θ, который стремится к 1; следовательно, sin(θ)/θ стремится к 1, когда θ стремится к 0 с положительной стороны:

Для случая, когда θ — это небольшое отрицательное число -½ π <θ <0, мы используем тот факт, что синус — это нечётная функция:

Предел (cos(θ)-1)/θ при стремлении θ к 0

[править | править код]

Последний раздел позволяет нам относительно легко рассчитать этот новый предел. Это делается простым трюком. В этом расчёте знак θ неважен.

С использованием cos2θ – 1 = –sin2θ, факт, что предел произведения является произведением пределов, а предельный результат из предыдущего раздела, мы находим, что:

Предел tan(θ)/θ при стремлении θ к 0

[править | править код]

Используя предел для функции синуса и то, что функция тангенс нечётна и предел произведения является произведением пределов, мы находим:

Производная функции синуса

[править | править код]
Из определения производной
[править | править код]

Мы рассчитываем производную функции синуса из определения предела:

Используя формулы сложения углов sin(α+β) = sin α cos β + sin β cos α, мы имеем:

Использование пределов для функций синуса и косинуса:

Из производной гиперболических функций

[править | править код]

Если использовать гиперболические функции, то формально можно получить, что:

,

т.к.

Производная функции косинуса

[править | править код]

Из определения производной

[править | править код]

Мы снова вычисляем производную функции косинуса из определения предела:

Используя формулу сложения углов cos(α+β) = cos α cos β – sin α sin β, мы имеем:

Использование пределов для функций синуса и косинуса:

Из производной гиперболических функций

[править | править код]

Если использовать гиперболические функции, то формально можно получить, что:

Из цепного правила

[править | править код]

Чтобы вычислить производную функции косинуса из цепного правила, сначала обратите внимание на три следующих факта:

Первое и второе — это тригонометрические тождества, а третье доказано выше. Используя эти три факта, мы можем написать следующее:

Мы можем дифференцировать это, используя цепное правило. Положив , мы имеем:

.

Таким образом, мы доказали, что

.

Производная функции тангенса

[править | править код]

Из определения производной

[править | править код]

Чтобы вычислить производную функции тангенса tan θ, мы используем первые принципы. По определению:

Используя известную формулу угла tan(α+β) = (tan α + tan β) / (1 - tan α tan β), мы имеем:

Используя тот факт, что предел произведения является произведением пределов:

Используя предел для функции тангенса и тот факт, что tan δ стремится к 0, поскольку δ стремится к 0:

Сразу видим, что:

Из производной гиперболических функций

[править | править код]

Из правила частного

[править | править код]

Также можно вычислить производную функции тангенса, используя правило частного:

Числитель можно упростить до 1 с помощью пифагорового тождества, что даёт нам:

Следовательно,

Доказательства производных обратных тригонометрических функций

[править | править код]

Следующие производные можно найти, установив переменную y равной обратной тригонометрической функции, от которой мы хотим взять производную. Используя неявное дифференцирование и затем решая для dy/dx, производная обратной функции будет найдена в терминах y. Чтобы преобразовать dy/dx обратно в термины x, мы можем нарисовать эталонный треугольник на единичной окружности, положив θ равным y. Используя теорему Пифагора и определение обычных тригонометрических функций, мы наконец можем выразить dy/dx через x.

Дифференцирование функции арксинуса

[править | править код]

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Подставляя сверху , имеем:

Подставляя сверху , имеем:

Из производной обратной гиперболической функции

[править | править код]

Дифференцирование функции арккосинуса

[править | править код]

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Подставляя сверху , получаем:

Подставляя сверху , получаем:

В качестве альтернативы, как только производная от установлена, производная от сразу следует путём дифференцирования тождества так, что .

Из производной обратной гиперболической функции

[править | править код]

Дифференцирование функции арктангенса

[править | править код]

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Левая сторона:

, используя пифагорово тождество

Правая сторона:

Следовательно,

Подставляя сверху , получаем:

Из производной обратной гиперболической функции

[править | править код]

Дифференцирование функции арккотангенса

[править | править код]

Пусть

где Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Левая сторона:

, используя пифагорово тождество

Правая сторона:

Следовательно,

Подставляя , получаем:

Из производной обратной гиперболической функции

[править | править код]

Дифференцирование функции арксеканса

[править | править код]

Использование неявного дифференцирования

[править | править код]

Пусть

Тогда

(Абсолютное значение в выражении необходимо, поскольку произведение секанса и тангенса в интервале y всегда неотрицательно, а радикал всегда неотрицателен по определению главного квадратного корня, поэтому оставшийся множитель также должен быть неотрицательным, что достигается за счёт использования абсолютного значения x.)

Использование цепного правила

[править | править код]

В качестве альтернативы, производная арксеканса может быть получена из производной арккосинуса с использованием цепного правила.

Пусть

где

and

Тогда, применяя цепное правило к , имеем:

Дифференцирование функции арккосеканса

[править | править код]

Использование неявного дифференцирования

[править | править код]

Пусть

Тогда

(Абсолютное значение в выражении необходимо, поскольку произведение косеканса и котангенса в интервале y всегда неотрицательно, а радикал всегда неотрицателен по определению главного квадратного корня, поэтому оставшийся множитель также должен быть неотрицательным, что достигается за счёт использования абсолютного значения x.)

Использование цепного правила

[править | править код]

В качестве альтернативы, производная арккосеканса может быть получена из производной арксинуса с использованием цепного правила.

Пусть

где

and

Тогда, применяя цепное правило к , имеем:

Примечания

[править | править код]
  1. Производные тригонометрических функций. math24.ru. Math24. Дата обращения: 7 июля 2021. Архивировано 9 июля 2021 года.

Литература

[править | править код]
  • Справочник по математическим функциям[англ.], Под редакцией Абрамовица и Стегуна, Национальное бюро стандартов, Серия по прикладной математике, 55 (1964)
  • Курант Р. Курс дифференциального и интегрального исчисления. — 4. — Москва: Наука, 1970. — Т. 1. — 672 с.
{{bottomLinkPreText}} {{bottomLinkText}}
Дифференцирование тригонометрических функций
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?