For faster navigation, this Iframe is preloading the Wikiwand page for Нормирование (алгебра).

Нормирование (алгебра)

Материал из Википедии — свободной энциклопедии

Норми́рование — отображение элементов поля или целостного кольца в некоторое упорядоченное поле , обладающее следующими свойствами:

1) и только при
2)
3)

Если вместо 3) выполняется более сильное условие:

3a) , то нормирование называется неархимедовым.

Значение называется нормой элемента . Если упорядоченное поле является полем вещественных чисел , то нормирование часто называют абсолютным значением.

Нормы и называются эквивалентными, если равносильно .

Примеры нормирований

[править | править код]
  • Нормирование, при котором , для остальных . Такое нормирование называется тривиальным.
  • Обычная абсолютная величина в поле вещественных чисел и модуль в поле комплексных чисел являются нормированием.
  • Пусть  — поле рациональных чисел, а  — некоторое простое число. Любое рациональное число можно представить в виде дроби , где и не кратны . Можно определить следующее нормирование . Это нормирование является неархимедовым и называется p-адическим нормированием.

Согласно теореме Островского[англ.], любая нетривиальная норма на эквивалентна либо абсолютной величине , либо р-адическому нормированию.

Свойства нормы

[править | править код]
  • Для вещественнозначного нормирования выполняется свойство (здесь предполагается, что на поле вещественных чисел задана обычная норма - модуль числа)
  • Вещественнозначное нормирование является неархимедовым тогда и только тогда, когда существует положительное число , такое, что для любой суммы единичных элементов поля :
3b)

Пусть данное условие выполнено. Тогда для любых элементов и из поля имеем:

Извлекая из обеих частей корень и переходя к пределу при , получаем условие 3a).[источник не указан 4041 день] Обратное утверждение очевидно.[источник не указан 4041 день]

Нормированное поле как метрическое пространство

[править | править код]

Из свойств 1-3 немедленно следует, что, определяя расстояние между двумя элементами вещественнозначного нормированного поля как норму разности , мы превращаем его в метрическое пространство, в случае неархимедовой нормы — в ультраметрическое пространство. Разные нормы определяют разные метрики. Эквивалентные нормы определяют одинаковую топологию в .

Пополнение

[править | править код]

Как и для любого метрического пространства, можно ввести понятие полноты и доказать, что любое нормированное поле изоморфно вкладывается в полное нормированное поле , то есть существует изоморфизм . Норма в продолжает норму в , то есть для каждого из : , причём плотно в относительно этой нормы. Любое такое поле определено однозначно с точностью до изоморфизма, сохраняющего нормы (изометрии) и тождественного на ; оно называется пополнением поля .

Пример. Пополнением поля рациональных чисел с p-адической метрикой является поле p-адических чисел .

Экспоненциальное нормирование

[править | править код]

Пусть  — отображение из мультипликативной группы поля в некоторую вполне упорядоченную абелеву группу, такое, что

1)
2)

Удобно также доопределить эту функцию в нуле: . Групповая операция на определена следующим образом: для любого , упорядочена таким образом, чтобы быть больше всех элементов первоначальной группы. При этом свойства 1) и 2) остаются верными.

В терминологии Бурбаки функция с такими свойствами называется нормированием. Также термин «нормирование» для такой функции используют Атья и Макдональд[1] и Ленг.[2] Однако некоторые авторы оставляют термин «нормирование» для функции, обладающей свойствами, перечисленными в начале этой статьи, а нормирование в терминах Бурбаки называют экспоненциальным нормированием. Область значений отображения называют группой нормирования, а множество тех элементов поля , для которых  — кольцом нормирования (обозначение — ), нетрудно проверить, что оно действительно является кольцом.

Дискретное нормирование — это экспоненциальное нормирование, являющееся отображением в аддитивную группу целых чисел. В этом случае кольцо нормирования называется кольцом дискретного нормирования.

Примечания

[править | править код]
  1. Атья М., Макдональд И. Введение в коммутативную алгебру, с. 115.
  2. Ленг С. Алгебра, с. 337.

Литература

[править | править код]
  • Атья М., Макдональд И. Введение в коммутативную алгебру. — М.: Мир, 1972.
  • Ван дер Варден Б. Л. Алгебра. — М.: Наука, 1975.
  • Зарисский О., Самюэль П. Коммутативная алгебра. — М.: ИЛ, 1963. — Т. 2.
  • Ленг С. Алгебра. — М.: Мир, 1967.
{{bottomLinkPreText}} {{bottomLinkText}}
Нормирование (алгебра)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?