For faster navigation, this Iframe is preloading the Wikiwand page for Аналитическая функция.

Аналитическая функция

Материал из Википедии — свободной энциклопедии

Аналитическая (голоморфная) функция — функция, которая может быть представлена степенным рядом:

где — комплексные коэффициенты, не зависящие от комплексной переменной [1].

Аналитическая функция вещественной переменной — функция, которая совпадает со своим рядом Тейлора в окрестности любой точки области определения.

Однозначная функция называется аналитической в точке , если сужение функции на некоторую окрестность является аналитической функцией. Если функция аналитична в точке , то она аналитическая в каждой точке некоторой окрестности точки .

Однозначная аналитическая функция одной комплексной переменной — это функция , для которой в некоторой односвязной области , называемой областью аналитичности, выполняется одно из четырёх равносильных условий:

  1. Ряд Тейлора функции в каждой точке сходится, и его сумма равна (аналитичность в смысле Вейерштрасса).
  2. В каждой точке выполняются условия Коши — Римана и Здесь и  — вещественная и мнимая части рассматриваемой функции. (Аналитичность в смысле Коши — Римана.)
  3. Интеграл для любой замкнутой кривой (аналитичность в смысле Коши).
  4. Функция является голоморфной в области . То есть комплексно дифференцируема в каждой точке .

В курсе комплексного анализа доказывается эквивалентность этих определений.

  • Арифметические свойства

Если и аналитичны в области

  1. Функции , и аналитичны в .
  2. Если в области не обращается в ноль, то будет аналитична в
  3. Если в области не обращается в ноль, то будет аналитична в .
  • Аналитическая функция бесконечно дифференцируема в своей области аналитичности. Для комплексных функций одной переменной верно и обратное.

Некоторые свойства аналитических функций близки к свойствам многочленов, что, впрочем, и неудивительно — определение аналитичности в смысле Вейерштрасса свидетельствует о том, что аналитические функции — в некотором роде предельные варианты многочленов. Допустим, согласно основной теореме алгебры любой многочлен может иметь нулей числом не более его степени. Для аналитических функций справедливо аналогичное утверждение, вытекающее из теоремы единственности в альтернативной форме:

  • Если множество нулей аналитической в односвязной области функции имеет в этой области предельную точку, то функция тождественно равна нулю.
  • Для функции от нескольких действительных переменных аналитичности по каждой из переменных недостаточно для аналитичности функции. Для функции от нескольких комплексных переменных аналитичности по каждой из переменных достаточно для аналитичности функции (Теорема Хартогса).

Аналитическими являются суммы, разности, произведения и частные аналитических функций.

Все многочлены от являются аналитическими функциями на всей комплексной плоскости .

Далее, аналитическими, хотя и не на всей комплексной плоскости, являются рациональные функции (отличные от многочленов), логарифм, тригонометрические функции, обратные тригонометрические функции и многие другие классы функций.

Примеры неаналитических функций на включают

  1. ,
  2. ,

поскольку они не имеют комплексной производной ни в одной точке. При этом сужение на вещественную ось будет аналитической функцией вещественного переменного (так как оно полностью совпадает с сужением функции ).

Литература

[править | править код]
  • Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1969. — 577 с.
  • Титчмарш Е. Теория функций: Пер. с англ. — 2-е изд., перераб. — М.: Наука, 1980. — 464 с.
  • Привалов И. И. Введение в теорию функций комплексного переменного: Пособие для высшей школы. — М.Л.: Государственное издательство, 1927. — 316 с.
  • Евграфов М. А. Аналитические функции. — 2-е изд., перераб. и дополн. — М.: Наука, 1968. — 472 с.
  • Conway, John B.[англ.]. Functions of One Complex Variable I (англ.). — 2nd. — Springer-Verlag, 1978. — (Graduate Texts in Mathematics 11). — ISBN 978-0-387-90328-6.
  • Krantz, Steven[англ.]; Parks, Harold R.[англ.]. A Primer of Real Analytic Functions (англ.). — 2nd. — Birkhäuser[англ.], 2002. — ISBN 0-8176-4264-1.

Примечания

[править | править код]
  1. Гл. ред. Прохоров Ю. В., ред. кол.: Адян С. И., Бахвалов Н. С., Битюцков В. И., Ершов А. П., Кудрявцев Л. Д., Онищик А. Л., Юшкевич А. П. Математический энциклопедический словарь / под ред. Ю. В. Прохорова. — М.: Издательство «Советская энциклопедия», 1988. — С. 69, 567. — 850 с. Архивировано 30 октября 2023 года.
{{bottomLinkPreText}} {{bottomLinkText}}
Аналитическая функция
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?