For faster navigation, this Iframe is preloading the Wikiwand page for Împrăștiere Compton.

Împrăștiere Compton

Acest articol sau această secțiune are bibliografia incompletă sau inexistentă. Puteți contribui prin adăugarea de referințe în vederea susținerii bibliografice a afirmațiilor pe care le conține.
Diagrame Feynman
s-channel
u-channel

În fizică, efectul Compton sau împrăștierea Compton reprezintă scăderea energiei (și creșterea lungimii de undă) a unui foton de raze X sau gama, la interacțiunea acestuia cu materia. Există și împrăștierea Compton inversă, unde fotonului îi crește energia (scăzându-i lungimea de undă) la interacțiunea cu materia. Cantitatea cu care se mărește lungimea de undă se numește deplasare Compton. Deși există și împrăștiere Compton nucleară, efectul Compton se referă de regulă la interacțiunea care implică doar electronii unui atom. Efectul Compton a fost descoperit de Arthur Holly Compton în 1923 și ulterior verificat de studentul său Y. H. Woo în anii care au urmat. Arthur Compton a primit pentru această descoperire Premiul Nobel pentru Fizică în 1927.

Importanța efectului constă în faptul că demonstrează că lumina nu poate fi explicată doar ca fenomen ondulatoriu. Teoria clasică a undelor electromagnetice împrăștiate de particule cu sarcină, nu poate explica modificarea lungimii de undă. Pentru a explica împrăștierea Compton, lumina trebuie să se comporte ca și cum ar fi compusă din particule. Experimentul lui Compton a convins fizicienii că lumina se poate comporta ca un flux de particule a cărui energie este proporțională cu frecvența radiației.

Interacțiunea dintre electroni și fotoni de mare energie are ca rezultat primirea de către electron a unei părți din energie și emiterea unui foton care conține restul de energie într-o direcție diferită de cea a originalului, astfel încât impulsul total al sistemului să se conserve. Dacă fotonul mai are suficientă energie, procesul poate fi repetat. Dacă fotonul are suficientă energie (în general câțiva eV, în preajma energiei fotonilor din domeniul luminii vizibile), poate elibera complet un electron de pe orbita atomică (proces cunoscut sub numele de efect fotoelectric).

Formula deplasării Compton

[modificare | modificare sursă]
Un foton cu lungimea de undă sosește din stânga, se ciocnește cu un obiect în repaus, și rezultă un nou foton de lungime de undă la unghiul .

Compton a folosit trei formule fundamentale reprezentând diferitele aspecte ale fizicii clasice și moderne, combinându-le pentru a descrie comportamentul cuantic al luminii.

Rezultatul final este Ecuația împrăștierii Compton:

unde

este lungimea de undă a fotonului înainte de împrăștiere,
este lungimea de undă a fotonului după împrăștiere,
este masa electronului,
este unghiul de deplasare a direcției fotonului,
este constanta lui Planck, și
este viteza luminii.
este cunoscută sub numele de Lungime de undă Compton.
{{bottomLinkPreText}} {{bottomLinkText}}
Împrăștiere Compton
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?