For faster navigation, this Iframe is preloading the Wikiwand page for Paradoxo de São Petersburgo.

Paradoxo de São Petersburgo

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências (Encontre fontes: ABW  • CAPES  • Google (N • L • A)). (Dezembro de 2022)

O paradoxo de São Petersburgo é um dos mais famosos paradoxos em teoria das probabilidades. Foi publicado pela primeira vez em 1738 em um artigo pelo matemático Daniel Bernoulli, embora tenha sido introduzido pelo seu primo Nicolau I Bernoulli em 1713.[1]

Pedro e Paulo concordam em jogar um jogo de cara ou coroa, em que jogam uma moeda honesta sucessivamente n vezes, até que o resultado seja cara; e Paulo pagará a Pedro moedas. Por exemplo, se o primeiro lance der cara, Paulo dará duas moedas a Pedro; se o primeiro lance der coroa e o segundo der cara, Paulo dará a Pedro quatro moedas. Se a cara só aparecer no terceiro lance, Pedro receberá oito moedas.

Quanto deve Pedro pagar a Paulo pelo privilégio de jogar?

O senso comum sugere uma soma finita modesta. Mas ao calcular a esperança do pagamento que Pedro recebe, temos uma resposta diferente:

Sendo o pagamento que Pedro recebe após um jogo, calcula-se a esperança de :

Ou seja, Pedro poderia pagar a Paulo qualquer quantia para jogar e teria lucro se jogasse um grande número de vezes. Isso assumindo que o capital de Pedro e o número de jogos que os dois podem jogar são ilimitados.

O paradoxo ocorre quando analisamos os problemas no mundo real. Quando Georges-Louis Leclerc, conde de Buffon fez um teste empírico do caso, achou que em 2084 jogos Paulo teria pago a Pedro 10057 moedas. Isso indica que em qualquer jogo a esperança de Paulo, em vez de ser infinita, na verdade é algo inferior a 5 moedas, já que

Uma explicação para esse paradoxo é o fato de que o cálculo da esperança é baseado num número infinito de jogadas, em que, eventualmente haveria um pagamento a Pedro que compense o seu custo. Porém, os eventos que pagam pouco, n=1, 2, ...8, por exemplo, ocorrem em mais de 99% das jogadas, o que leva ao resultado obtido po George-Louis Lecler.

Outras explicações foram dadas para o paradoxo durante o século XVIII, embora algumas pessoas tenham preferido, como solução, observar que o problema é inerentemente impossível, pois a fortuna de Paulo é necessariamente finita; portanto, ele não poderia pagar as somas ilimitadas que poderiam ser necessárias no caso de uma longa demora no aparecimento de cara.

Referências

  1. Cusinato, Júnior, Rafael Tiecher, Sabino Porto. «A TEORIA DA DECISÃO SOB INCERTEZA E A HIPÓTESE DA UTILIDADE ESPERADA» (PDF). www.ufrgs.br. Universidade Federal do Rio Grande do Sul. Consultado em 11 de março de 2023 

Ligações externas

[editar | editar código-fonte]
{{bottomLinkPreText}} {{bottomLinkText}}
Paradoxo de São Petersburgo
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?