For faster navigation, this Iframe is preloading the Wikiwand page for Palagonite.

Palagonite

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências (Encontre fontes: ABW  • CAPES  • Google (N • L • A)). (Junho de 2022)

Palagonite, por vezes referido como palagonito, é um material mineral rico em ferro, comum em ambientes de origem hidromagmática, resultante da alteração de materiais vítricos de natureza basáltica em presença de água. A palagonite é uma rocha de cor clara, friável e de baixa densidade, geralmente ocorrendo em camadas soldadas de espessura variável, que pode ir de alguns milímetros a muitos metros. Dependendo da temperatura e da abundância de água, a palogonite pode formar-se, num processo designado por palagonitização, em períodos que vão de alguns meses a milhares de anos após a erupção dos materiais que lhe dão origem. Não sendo totalmente cristalina, nem tendo uma composição química uniforme, embora sendo uma rocha, a palagonite é em geral considerada um mineralóide.

O processo de palagonitização

[editar | editar código-fonte]

A formação da palagonite inicia-se com a interacção entre a água e o basalto em fusão quando lavas basálticas emergem em ambientes aquáticos. Nestas circunstâncias, ao entrar em contacto com a lava, a água transforma-se instantaneamente em vapor, pulverizando o material basáltico em finos fragmentos de elevada superfície específica, os quais reagem a alta temperatura com a água vaporizada para formar um material vítreo de cor clara que, depois de mais ou menos soldado por compressão a quente, dá origem a formações de tufo vulcânico, cujos exemplos mais conhecidos são os típicos cones litorais das ilhas vulcânicas.

O vidro vulcânico assim formado é similar à obsidiana, embora tenha características físicas e cor muito diferentes e uma composição química mais próxima do basalto do qual deriva. É a partir deste material permeável, em geral uma tefra pouco consolidada e facilmente alterável, que se inicia o processo de formação da palagonite, a palagonitização, o qual tanto pode ocorrer em formações subaéreas como em formações imersas, com destaque para as formações submarinas subjacentes aos cones litorais.

A transforma-se do vídeo basáltico em palagonite caracteriza-se pela ocorrência de um conjunto complexo de reacções químicas, que levam à progressiva alteração das características físico-químicas e da composição dos materiais, incluindo a progressiva consolidação das formações, já que a palagonite actua como cimento, ligando os grãos até formar tufos vulcânicos em geral muito consolidados, formando camadas duras e relativamente impermeáveis.

Durante o processo, o vidro liberta catiões, num processo de substituição por moléculas de água que leva à oxidação do ferro presente na massa basáltica. Os catiões libertados, particularmente Si, Al, Ca, Na, K e Mg, preenchem as microcavidades da rocha, cimentando-a. Cerca de dez minerais, alguns deles específicos destas formações, são formados neste processo, os mais comuns dos quais são a analsime, a phillipsite, a tobermotite, a smectite e a anidrite.

Apesar da palagonitização do vidro vulcânico ser um processo contínuo de dissolução do vidro, formação de palagonite e evolução dos minerais assim formados, na sua progressão podem ser considerados dois estádios distintos, caracterizados por diferentes reacções químicas e mobilidade diferenciada dos elementos[1]:

  1. O processo inicia-se com a dissolução congruente do vidro, acompanhada pela precipitação da palagonite sob a forma de um gel amarelado, constituído por materiais amorfos opticamente isotrópicos. É neste estádio que se verificam as principais perdas de Si, Al, Ca, Na, K e Mg, acompanhada por hidratação que leva a um enriquecimento activo em H2O e a passivo em Ti e Fe do material.
  2. O estágio seguinte caracteriza-se pela maturação dos materiais formados, durante o qual a palagonite recém-formada, termodinamicamente instável, reagem com o fluido que a rodeia e cristaliza sob a forma de smectite. Durante o processo, a palagonite em formação absorve Si, Al, Mg e K da solução e perde Ti e H2O. A perda de Ca e Na continua durante esta fase, enquanto a perda de Fe é reduzida ou cessa.

O ritmo de palagonitização depende essencialmente da temperatura da água no interior da rocha. A temperaturas superiores a 100 °C a consolidação das tefras em palagonite ocorre em períodos inferiores a um ano, dependendo da abundância de água e das composição química dos basaltos. A temperaturas mais baixas o ritmo de palagonitização é mais lento, sendo, no caso concreto da ilha de Surtsey e para temperaturas de 40 °C a 50 °C, de 4 a 8 anos[2].

Quando se considera o balanço geral do sistema rocha-água, a conversão do vidro vulcânico em palagonite implica uma muito maior perda de elementos para a água do que a meteorização normalmente implicaria para aquele tipo de materiais base. Estudos têm vindo a demonstrar perdas ponderais de até 65 % (em peso) durante a palagonitização, comparada com perdas da ordem dos 28 % durante a meteorização[3].

Investigação realizada no vulcão de Surtsey, na Islândia, demonstrou que certas bactérias presentes nas rochas contribuem para a dissolução do vidro basáltico constituinte das tefras, aumentando assim o ritmo de formação da palagonite.

A palagonite ocorre frequentemente sob a forma de tufos vulcânicos muito espessos, em geral designados tufos palagoníticos, constituídos por fragmentos sideromelânicos e pedaços de rocha basáltica incrustados numa matriz de palagonite. Quando predominam os elementos sideromelânicos, o tufo vulcânico resultante é designado por hialoclastite.

As formações palagoníticas são comuns em ilhas vulcânicas, constituindo boa parte dos ilhéus e cones costeiros típicos das formações litorais de natureza basáltica. Exemplo de grandes formações palagoníticas são o Monte Brasil e o ilhéu de Vila Franca, nos Açores, e os cones costeiros das ilhas Galápagos, onde o material foi pela primeira vez descrito por Charles Darwin.

Rochas com uma assinatura óptica semelhante à palagonite foram observados entre os regolitos que recobrem a superfície do planeta Marte, sendo uma das provas mais sólidas de que naquele planeta terá existido água em abundância.

Referências

  1. Nicole A. Stroncik e Hans-Ulrich Schmincke, Evolution of palagonite: Crystallization, chemical changes, and element budget, in Geochemstry, Geophysics, and Geosystems, vol. 2, n.º 7, American Geophysical Union, 2001.
  2. Surtsey: The formation of palagonite tuffs.
  3. Nicole A. Stroncik e Hans-Ulrich Schmincke, Palagonite: a review, in International journal of earth sciences (Int. j. earth sci.), vol. 91, n.º 4, pp. 680-697, Springer, Berlim, 2002 (ISSN 1437-3254).

Ligações externas

[editar | editar código-fonte]
{{bottomLinkPreText}} {{bottomLinkText}}
Palagonite
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?