For faster navigation, this Iframe is preloading the Wikiwand page for Mecânica celeste.

Mecânica celeste

A mecânica celeste é o ramo da astronomia que estuda os movimentos dos corpos celestes (naturais ou não). A principal força determinante dos movimentos celestes é a gravitação, contudo certos corpos (satélites artificiais, cometas e asteróides) podem sofrer a influência marcante de forças não gravitacionais como a pressão de radiação e o atrito (com a atmosfera superior no caso dos satélites artificiais terrestres). A astronáutica está intimamente ligada a esta ciência.[1][2][3][4][5][6]

O objetivo da Mecânica Celeste, como o da Astrometria, é o de determinar as posições relativas dos astros e suas variações com o tempo, mas diferentemente da Astrometria, a Mecânica Celeste faz esse estudo baseada principalmente nos dados da Astrometria e na parte teórica fornecida pela Mecânica Clássica.[3]

A Mecânica Celeste é, pois, a parte da Astronomia que visa estudar o movimento relativo dos astros que estão submetidos às forças admitidas como resultantes da atração gravitacional entre esses corpos celestes. Assim, podemos dizer que a Mecânica Celeste estuda os movimentos relativos dos astros, aplicando as leis da Mecânica Newtoniana.[6]

Funcionalidades

[editar | editar código-fonte]

Usando a mecânica celeste é possível, por exemplo, determinar as distâncias e as posições dos astros do Sistema Solar, calcular órbitas de satélites artificiais em torno da Terra, determinar as trajetórias de sondas espaciais enviadas a outros astros do Sistema Solar e determinar as massas de corpos celestes, tais como planetas, satélites e estrelas.[3][6]

Exemplos de problemas

[editar | editar código-fonte]

Alguns problemas estudados pela mecânica celeste são:[7][3][6]

  • O problema de um corpo de massa infinitesimal sujeito à atração gravitacional de outro corpo. Este problema tem uma solução fechada, mesmo no caso de três dimensões, porém para resolver a posição do corpo no tempo é preciso resolver uma equação transcendente: a equação de Kepler.[8]
  • O problema dos dois corpos: calcular as órbitas de dois corpos (podem ser considerados pontos de massa, ou corpos de raio pequeno com simetria esférica) sujeitos à ação gravitacional. Este problema se reduz ao caso de um corpo.
  • O problema dos três corpos: calcular as órbitas de três corpos sujeitos às ações gravitacionais. Este problema, exceto em casos muito especiais, não tem uma solução analítica.
  • Campos gravitacionais sem simetria esférica: calcular a órbita de um corpo de massa infinitesimal em um campo gravitacional assimétrico (por exemplo, um satélite orbitando um corpo achatado).

A mecânica celeste mostrou sua eficiência na descoberta do planeta Netuno em 1846 por U. J. de Verrier. Baseados nas perturbações da órbita do planeta Urano, astrônomos puderam calcular a presença de um outro corpo celeste influenciando seu movimento. E lá estava Netuno. Com Plutão não foi diferente. P. Lowel no início do século XX pôde prever a existência do planeta estudando a órbita de Netuno. Em 1930, Plutão foi finalmente descoberto por Clyde Tombaugh.

O modelo de Kepler é heliocêntrico. Seu modelo foi muito criticado pela falta de simetria que constava no fato do Sol ocupar um dos focos da elipse e o outro simplesmente ser preenchido com o vácuo.

O modelo da mecânica celeste de Tycho Brahe é muito curioso, pois ele coloca os planetas orbitando o Sol e este orbitando a Terra, o que o torna ao mesmo tempo geocêntrico e heliocêntrico.

Lei da gravitação universal

[editar | editar código-fonte]

Um destaque na história da física foi a descoberta, por Isaac Newton, da lei da gravitação universal: todos os objetos se atraem com uma força diretamente proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância entre seus centros. Ao definir uma única lei matemática para os fenômenos físicos no universo observável, Newton mostrou que a física terrestre e física celeste são a mesma coisa. O conceito de gravidade poderia, em uma única fórmula:[3][6][8]

  1. Revelar o significado físico de três leis de Kepler do movimento planetário;
  2. Resolver o intrincado problema da origem das marés;
  3. Explicar a observação curiosa e inexplicável de Galileu de que o movimento de um objeto em queda é independente de seu peso.

A força centrípeta das órbitas circulares pode ser deduzida a partir da terceira lei de Kepler do movimento planetário e a dinâmica do movimento circular uniforme:

De acordo com a terceira lei de Kepler, o período é proporcional ao cubo do semieixo maior da elipse. No caso de órbita circular, o semieixo é o próprio raio e, assim:

A dinâmica do movimento circular uniforme, nos diz que em uma trajetória circular, a força a ser aplicada ao corpo é o produto de sua massa pela aceleração padrão:

O tempo (período ) que leva um planeta para completar uma volta é a razão entre o comprimento da circunferência e velocidade:

Encontros espaciais

[editar | editar código-fonte]

O objetivo deste programa é enviar uma nave da Terra a Marte e voltar para a Terra seguindo um caminho chamado de semielíptica órbita de transferência de Hohmann. Supõe-se que as órbitas da Terra e Marte são circulares e que as únicas forças na nave espacial são devido à ação do sol, ignorando as influências mútuas entre estes planetas e do navio.[3][6]

Primeiro, devemos fazer a viagem da Terra a Marte. Observar a magnitude das velocidades angulares dos dois planetas. Qual deve ser a distância angular entre a Terra e Marte no momento do lançamento da nave espacial chega a Marte ? Em que planeta tem que ir em frente?

Uma vez que alcança Marte, fazemos as mesmas perguntas para a viagem de volta para a Terra.

Movimento dos planetas

[editar | editar código-fonte]
Movimento dos planetas.
Equação da dinâmica do
movimento circular uniforme.

Nós assumimos que os planetas Marte e Terra têm órbita circular em torno do Sol. Aplicando a equação da dinâmica do movimento circular uniforme,[3][6]

Onde:

é a massa solar
é o raio da trajetória circular descrita pelo planeta.

Para a Terra:

, de modo que

Para Marte:

, então

Órbita de transferência de Hohmann

[editar | editar código-fonte]
Encontro do sol e da terra.
Equação da força de atração.

Assumimos influência insignificante dos planetas no movimento da nave espacial em sua viagem da Terra a Marte. A nave irá descrever uma órbita elíptica com um dos focos no Sol.[3][6] O periélio é o raio da Terra e o raio de Marte afélio .

Conhecida , pode-se determinar a velocidade da espaçonave no periélio e afélio é a velocidade de Marte e é a velocidade da Terra, aplicando as propriedades da força atrativa.

A força de atração entre a nave e o Sol é central, onde é o momento angular que permanece constante.

A força de atração é conservadora, a energia total permanece constante

Resolvemos o sistema de duas equações com duas incógnitas, substituindo e :

Dados: , e ,

Resultado: e

A órbita elíptica que descreve a nave espacial tem:

  • semieixo maior ;
  • excentricidade .

Movimento do corpo é uma certa altura acima da nave espacial

[editar | editar código-fonte]

Considere primeiro o caso mais simples, o movimento de um corpo está em uma distância da espaçonave medido ao longo da direção radial e no momento inicial, tem a mesma velocidade. Ele libera o corpo e descobriram que se movem em órbitas diferentes.[3][6]

Movimento relativo

Vamos considerar dois casos que é positivo, a altura do corpo é maior do que a nave espacial, e é negativo, se a altura do corpo é menor que a da nave espacial.

A constância do momento angular e energia do corpo nos permitem calcular a distância máxima ou mínima e velocidade conhecida a distância mínima ou máxima de velocidade .

O sistema Terra-Lua fixo no espaço

[editar | editar código-fonte]

Dados do sistema Terra-Lua:[3][6]

Massa da Terra,

Raio da Terra,

Massa da Lua,

Raio da Lua,

Distância entre a Terra e a Lua,

Referências

  1. Mecânica Celeste
  2. MECÂNICA CELESTE
  3. a b c d e f g h i j Vladimir A. Chobotov, Orbital Mechanics , AIAA, 2002 ISBN 1-600-86097-4
  4. Asger Aaboe, Episodes from the Early History of Astronomy, 2001, Springer-Verlag, ISBN 0-387-95136-9
  5. Forest R. Moulton, Introduction to Celestial Mechanics, 1984, Dover, ISBN 0-486-64687-4
  6. a b c d e f g h i j Howard Curtis, Orbital Mechanics for Engineering Students , Butterworth-Heinemann, 2013 ISBN 0-080-97748-0
  7. Uma Introdução à Mecânica Celeste
  8. a b Mecânica Celeste (em inglês)
  • LUIZ G. SPOLADORE, MECANICA CELESTE, ARGONIO ISBN 8-560-59902-9
  • John E. Prussing, Bruce A. Conway, Orbital Mechanics, Oxford University Press, 1993 ISBN 0-195-07834-9
  • Almeida, Ana Cristina, 1963-, ed. lit., Portugal. Biblioteca Nacional, ed. lit., Santos, Manuela, 1955-, ed. lit., CDU: Classificação Decimal Universal: tabela de autoridade, Biblioteca Nacional Portugal, 2005 ISBN 9-725-65395-5
  • Paulo Marques dos Santos, Instituto Astronômico e Geofísico da USP: memória sobre sua formação e evolução, EdUSP, 2005 ISBN 8-531-40878-4
  • Jan Vrbik, New Methods of Celestial Mechanics, Bentham Science Publishers, 2010 ISBN 1-608-05187-0
  • J. M. A. Danby, Fundamentals of Celestial Mechanics, 1992, Willmann-Bell ISBN 0-943-39620-4
  • Alessandra Celletti, Ettore Perozzi, Celestial Mechanics: The Waltz of the Planets, 2007, Springer-Praxis, ISBN 0-387-30777-X

Ligações externas

[editar | editar código-fonte]
{{bottomLinkPreText}} {{bottomLinkText}}
Mecânica celeste
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?