For faster navigation, this Iframe is preloading the Wikiwand page for Grupo de renormalização.

Grupo de renormalização


Numa teoria quântica de campos, a regularização de divergências e a renormalização são geralmente vistas apenas como técnicas para tornar funções de correlações finitas. Contudo, elas possuem um significado físico muito profundo e mais importante: a descrição de teorias quânticas de campos mudam conforme a escala de energia. Essa ideia foi introduzida por Kenneth Wilson[1] e é quantificada pelas equações do grupo de renormalização.

Grupo de renormalização no espaço de momentos

[editar | editar código-fonte]

Suponha uma teoria quântica de campos com campos e constantes de acoplamento descrita pela ação clássica . Vamos considerar a expansão em modos de Fourier de

Usualmente, a integral é sobre todas as frequências . Neste caso, várias funções de correlação podem não ser bem definidas. Uma forma de regularizar a teoria é introduzir uma frequência de corte ultravioleta . Isto é, limitamos a integral ao disco

Chamaremos esse campos de e diremos que ele é o campo na escala . Então

Também chamaremos a constante de acoplamento de . A função partição sobre os campos é

Já que alguns dos modos de Fourier estão faltando, o campo é praticamente constante em distâncias menores que . Então, introduzir uma frequência de corte ultravioleta é o mesmo que introduzir um corte em pequenas distâncias. É óbvio que a introdução desse limite quebra a simetria de Poincaré. Eventualmente, vamos tomar o limite do contínuo , onde a simetria de Poincaré é recuperada. A questão de renormalizabilidade é se podemos fazer isso mantendo as quantidades físicas numa escala de energia finita regulares.[2]

Vamos decompor a região de integração da expansão em modos em duas partes:

e

Chamaremos as expansões em modos correspondentes por

onde B e A referem-se a Baixas e Altas energias. Nós gostaríamos de estudar o comportamento da teoria em energias menores que , por exemplo, amplitudes de espalhamento de partículas com momentos . O que procuramos então é uma ação que descreva esses efeitos somente em termos de . Ela pode ser obtida integrando sobre na integral de trajetória, mantendo variável

Isso é chamado teoria de campos efetiva na energia . Por vezes, quando tomamos o limite para o contínuo , a expressão para a ação fica divergente e isso é a indicação que precisamos mudar a descrição da teoria em baixas energias. Nos casos mais drásticos, precisamos encontrar um novo conjunto completamente novo de campos e simetrias para descrever a teoria. Contudo, em muitos casos, a mudança de variáveis e parâmetros têm a forma:

Aqui, e são os novos campos, em termos dos quais a ação efetiva

é regular no limite para o contínuo. Os campos e as contantes na escala de corte são chamados de campos nus e constantes de acoplamentos nuas, enquanto e são ditas renormalizados.

Equação de Callan-Symanzik

[editar | editar código-fonte]

Se pode olhar para essa mudança de campos e constantes de duas formas. Uma forma de ver é fixar e variar . Nós fixamos os campos e constantes de acoplamento numa escala (com os valores medidos nessa escala) e mudamos os campos nus e as contantes nuas . Se pudermos mover para o infinito sem mudar o comportamento do sistema na energia (descrito por e ), então, nesse limite, obtemos uma teoria quântica de campos com simetria de Poincaré.

Uma outra forma de ver é mover , fixando e consequentemente e . Desta forma, o campo renormalizado e a constante de acoplamento renormalizada é que mudam com a escala. Essa constante é dita constante de acoplamento corredora. Em particular, se mudamos a escala de para , as constantes de acoplamento mudarão de para , onde é a inversa da função definida anteriormente. Com efeito, definindo um campo com contribuições dos modos de Fourier entre , podemos repetir o raciocínio e escrever . Desta forma, uma mudança de escala induz uma mudança das contantes de acoplamento através do campo vetorial

Essa equação é chamada de equação de Callan-Symanzik[3] e o campo vetorial é chamado função beta da constante de acoplamento .

Notas e referências

  1. Wilson (1975). «The renormalization group: critical phenomena and the Kondo problem». Rev. Mod. Phys. 47 (4). 773 páginas  Parâmetro desconhecido |gfirst= ignorado (ajuda)
  2. Há maneiras de regularizar uma teoria sem quebrar a invariância por simetrias clássicas. Em particular, o método de regularização dimensional é comum na prática.
  3. C. G. Callan, K. Symanzik (1970). «Small Distance Behavior in Field Theory and Power Counting.». Comm. Math. Phys. 18. 227 páginas 
{{bottomLinkPreText}} {{bottomLinkText}}
Grupo de renormalização
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?