For faster navigation, this Iframe is preloading the Wikiwand page for Espaços linha e coluna.

Espaços linha e coluna

Em álgebra linear, os espaços linha e coluna referem-se aos espaços vetoriais gerados pelos conjuntos dos vetores linha e coluna de uma matriz. A dimensão do espaço linha de uma matriz é chamada de posto linha, enquanto que a dimensão do espaço coluna é chamada posto coluna. Como o posto linha é igual ao posto coluna é usual usar, simplesmente, o termo posto sem fazer referência a linha ou coluna. Também, usamos a notação para nos referirmos ao posto da matriz . [1][2][3]

Seja uma matriz real .

Espaço linha

[editar | editar código-fonte]

O espaço linha de é o espaço vetorial gerado pelo conjunto de vetores , onde:

.

A dimensão do espaço linha de é chamada de posto linha da matriz.[1][2][3]

Espaço coluna

[editar | editar código-fonte]

O espaço coluna de é o espaço vetorial gerado pelo conjunto de vetores , onde:

.

A dimensão do espaço coluna de é chamada de posto coluna da matriz.[1][2][3]

Propriedades do espaço linha

[editar | editar código-fonte]

O espaço linha de uma matriz possui as seguintes propriedades:[1]

  1. O posto linha de uma matriz é menor ou igual ao número de colunas da mesma.
  2. Se e são matrizes equivalentes por linha, então elas têm o mesmo posto linha.

Demonstração

1. O posto linha de uma matriz é menor ou igual ao número de colunas da mesma.

Seja uma matriz real . Então, os vetores linhas de formam um subconjunto do espaço euclidiano -dimensional. Ou seja, a dimensão do espaço linha é no máximo .

2. Se e são matrizes equivalentes por linha, então elas têm o mesmo posto linha.

Com efeito, se e são matrizes equivalentes por linha, então as linhas de são combinações lineares das linhas de e vice-versa. Portanto, o espaço vetorial gerado pelas linhas de é igual ao espaço vetorial gerado pelas linhas de , como queríamos demonstrar.

Propriedades do espaço coluna

[editar | editar código-fonte]

O espaço coluna de uma matriz possui as seguintes propriedades:[1]

  1. O posto coluna de uma matriz é menor ou igual ao número de linhas da mesma.
  2. O espaço imagem de uma transformação linear é igual ao espaço coluna da matriz que a represente.
  3. O posto de uma transformação linear é igual ao posto coluna de qualquer matriz que a represente.

Demonstração

1. O posto coluna de uma matriz é menor ou igual ao número de linhas da mesma.

Seja uma matriz real . Então, os vetores coluna de formam um subconjunto do espaço euclidiano -dimensional. Ou seja, a dimensão do espaço linha é no máximo .

2. O espaço imagem de uma transformação linear é igual ao espaço coluna da matriz que a represente.

Seja uma transformação linear do espaço euclidiano de dimensão no espaço euclidiano de dimenão . Seja, também, uma matriz que representa , i.e.:

.

Daí, vemos que pertence à imagem de se, e somente se, existe tal que . Ou seja, é uma combinação linear dos vetores coluna de , como queríamos demonstrar.

3. O posto de uma transformação linear é igual ao posto coluna de qualquer matriz que a represente.

Segue, imediatamente, da propriedade 2.

Relação entre os espaços linha e coluna

[editar | editar código-fonte]

Os espaços linha e coluna de uma matriz possuem as seguintes relações:[1]

  1. O espaço coluna de uma matriz é igual ao espaço linha de sua transposta.
  2. O posto coluna de uma matriz é igual ao seu posto linha.

Observamos que a propriedade 2. justifica denotar o posto coluna e o posto linha de uma matriz por ou , sem referência a linha ou coluna.

Demonstração

1. O espaço coluna de uma matriz é igual ao espaço linha de sua transposta.

Com efeito, o espaço linha de uma matriz é o espaço gerado pelo conjunto de vetores que formam as linhas da mesma. Agora, as linhas da transposta de uma matriz são as colunas da matriz original, donde segue o enunciado.

2. O posto coluna de uma matriz é igual ao seu posto linha.

Por definição, o posto linha de uma matriz é a dimensão do seu espaço linha. Sejam uma matriz e a matriz escalonada reduzida por linha de . Então, o número de vetores coluna de que são linearmente independentes é igual ao número de uns principais da matriz . Mas, este é também o número de vetores linha de que são linearmente independentes. Como e são matriz equivalentes por linha, temos que elas têm o mesmo posto linha. Concluímos, então, que o ponto coluna de é igual ao seu posto linha.

Sejam os vetores coluna de uma matriz .

Relação fundamental

[editar | editar código-fonte]

Se é uma matriz , então . Aqui, denota o posto de , enquanto denota sua nulidade.[1]

Demonstração

A nulidade de é a dimensão do espaço nulo de , i.e., a dimensão do espaço gerado pelas soluções de . Seja a matriz escalonada reduzida de . O posto de é igual ao número de linhas não nulas de , enquanto que a nulidade é igual a menos o número de linhas não nulas de . Ou seja, .

Posto e singularidade

[editar | editar código-fonte]

Os seguintes resultados relacionam o conceito de singularidade com o posto de uma matriz quadrada:[1]

  1. Uma matriz quadrada é não singular se, e somente se, .
  2. O determinante de uma matriz é não nulo se, e somente se, .
  3. Um sistema linear quadrado de ordem tem uma única solução se, e somente se, .
  4. Um conjunto de vetores coluna de um espaço euclidiano -dimensional é linearmente independente se, e somente se, a matriz formada tem determinante não nulo.

Demonstração

1. Uma matriz quadrada é não singular se, e somente se, .

Com efeito, é não singular se, e somente se, a nulidade de for igual a zero. O resultado segue, então da relação fundamental demonstrada acima.

2. O determinante de uma matriz é não nulo se, e somente se, .

Isto segue do resultados 1. demonstrado acima, uma vez que o determinante de uma matriz é não nulo se, e somente se, é não singular.

3. Um sistema linear quadrado de ordem tem uma única solução se, e somente se, .

Com efeito, um sistema linear quadrado de ordem tem uma única solução se, e somente se, é não singular. Portanto, este resultado segue do demonstrado no item 1. desta seção.

4. Um conjunto de vetores coluna de um espaço euclidiano -dimensional é linearmente independente se, e somente se, a matriz formada tem determinante não nulo.

Com efeito, uma matriz é invertível se, e somente se, suas colunas são linearmente independentes.


Referências

  1. a b c d e f g h Kolman, B. (2013). Álgebra linear com aplicações 9 ed. [S.l.]: LTC. ISBN 9788521622086 
  2. a b c Strang, Gilbert (2010). Álgebra linear e suas aplicações 4 ed. [S.l.]: Cengage. ISBN 9788522107445 
  3. a b c Lay, David (2013). Álgebra linear e suas aplicações 4 ed. [S.l.]: LTC. ISBN 9788521622093 
{{bottomLinkPreText}} {{bottomLinkText}}
Espaços linha e coluna
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?