For faster navigation, this Iframe is preloading the Wikiwand page for Absorbância.

Absorbância

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências (Encontre fontes: ABW  • CAPES  • Google (N • L • A)). (Outubro de 2020)

Absorbância, também chamada de absorvância, é a capacidade intrínseca dos materiais em absorver radiações em frequência específica. Usualmente, tal propriedade é empregada na análise de soluções em química analítica.

Em espectroscopia, a absorbância () é definida como

,

onde é a intensidade da luz com um comprimento de onda específico e que é passada por uma amostra (intensidade da luz transmitida) e é a intensidade da luz antes que entre na amostra (intensidade da luz incidente).

As medidas de absorbância são frequentemente usadas em química analítica, já que a absorbância é proporcional à espessura de uma amostra e a concentração da substância nesta, em contraste à transmitância , a qual varia exponencialmente com a espessura e a concentração. (Ver a lei de Beer-Lambert).[1]

Ao se incidir luz em um material, fótons de determinados comprimentos de onda serão absorvidos quando estes possuem a energia correspondente à diferença entre dois níveis energéticos dos átomos ou moléculas que estão atravessando. A energia é transferida para o material, e o feixe incidente sofre diminuição do número de fótons por segundo naqueles comprimentos de onda, sendo portanto atenuado.[2]

O termo absorção refere-se ao processo físico de absorver a luz, enquanto absorbância refere-se à quantificação matemática. Também, absorbância não mede sempre a absorção: se uma dada amostra é, por exemplo, uma suspensão (dispersão), parte da luz incidente irá de fato ser dispersada pelas partículas suspensas, e não propriamente absorvida. Absorbância somente contempla o raio de luz transmitido sobre a luz incidente, não o mecanismo pelo qual a intensidade da luz decresce. Apesar deste fato, absorbância pode ainda ser usada para determinar concentrações (de partículas) em alguns casos, sendo maior sua precisão quanto menor a interferência do espalhamento, uma vez que a luz transmitida levará em conta a fração absorvida e a fração dispersada (espalhamento de Rayleigh). Medidas de absorbância para quantificação de substâncias obtêm melhores resultados quando feitas em soluções diluidas.

Fora do campo da química analítica, a absorvância é algumas vezes definida como o logaritmo natural ao invés do logaritmo de base .

Embora a absorvância não tenha unidades verdadeiras, é frequentemente tratada em "Unidades de Absorvância" ou .[3]

A medida da absorbância de uma substância é realizada em um espectrofotômetro. As medidas são usualmente realizadas em solução. Luz monocromática do comprimento de onda desejado atravessa uma cubeta contendo a amostra, e outro feixe idêntico de luz atravessa um branco, composto pela cubeta preenchida pelo mesmo solvente da amostra, porém sem a substância sendo analisada. Um detector mede a intensidade dos feixes transmitidos. Alguns equipamentos requerem que o branco seja medido antes da amostra, enquanto outros medem os dois simultaneamente. A comparação com o branco, garante que só será avaliada a absorbância relativa ao soluto de interesse, e a absorbância do solvente e as perdas por reflexões na cubeta serão descontadas.[2] A absorbância é dada por:

Quanto maior for o comprimento atravessado pelo feixe (caminho ótico), maior será a absorbância, pois o feixe interagirá com mais partículas da substância atenuadora. Normalmente, utilizam-se cubetas padrão com comprimento interno de 1 cm.

Absorbância e transmitância

[editar | editar código-fonte]

Como a absorbância é uma medida logarítmica de uma razão de intensidades luminosa, não possui dimensionalidade. O logaritmo em base 10 gera a seguinte relação:

Absorbância: −log10(I/Io) Transmitância: I/Io
0 1
0.1 0.79
0.25 0.56
0.5 0.32
0.75 0.18
0.9 0.13
1 0.1
2 0.01
3 0.001

Dessa maneira, uma absorção de 1 significa que 90% da luz está sendo atenuada. uma absorção de 2 implica atenuação de 99%.

Limites de medição

[editar | editar código-fonte]

Boa parte dos equipamentos perdem a relação linear quando a absorbância é superior a 2 (1% de transmissão), e devem ser diluídas. Medidas de valores de absorbância menores que 0,0001 são de difíceis realização. A quantificação também é desaconselhada para soluções com concentrações superiores a 0,01Mol/L, devido a ocorrência de interações soluto-soluto que alteram a extensão da absorção.[2] Neste caso também recomenda-se a diluição.

Espectro de absorção

[editar | editar código-fonte]

Um espectrofotômetro também pode ser usado para se medir absorbância de uma amostra em diversos comprimentos de onda a intervalos regulares. O gráfico Absorbância x comprimento de onda (ou frequência ou número de onda) resultante é denominado espectro de absorção. O espectro de absorção pode ser utilizado para analisar todas as absorções realizadas pelo analito, selecionar quais os melhores comprimentos de onda para realização de medições, e na identificação de transições eletrônicas . A coloração da amostra está associada a seu espectro de absorção.[2]

Referências

  1. Lakowicz, Joseph R, Principles of fluorescence spectroscopy, 3ª edição, Springer, 2009. ISBN 978-0-387-46312-4 doi:10.1007/s00216-007-1822-x ISSN 1618-2642 Livro, ISSN 1618-2650 e-Livro (em inglês)
  2. a b c d SKOOG, WEST, HOLLER, CROUCH, Fundamentos de Química Analítica, Tradução da 8ª Edição norte-americana, Editora Thomson, São Paulo-SP, 2006.
  3. How to Make Your Next Paper Scientifically Effective". J. Phys. Chem. Lett. (4): 1578−1581. 2013. doi:10.1021/jz4006916 (em inglês)
  1. Raymond Chang, Físico-Química - 3.ed.: Para as Ciências Químicas e Biológicas, McGraw Hill Brasil, 2010 ISBN 8-563-30830-0
  2. Donald Voet, Judith G. Voet, Charlotte W. Pratt, Fundamentos de Bioquímica - 4.ed.: A Vida em Nível Molecular; Artmed Editora, 2014, ISBN 8-582-71066-6
  3. Srinivasan Damodaran | Kirk L. Parkin | Owen R. Fennema, Quimica de Alimentos de Fennema, Artmed, 2010 ISBN 8-536-32334-5
  4. Alessandra Nejar Bruno, Biotecnologia I: Princípios e Métodos, Artmed Editora, 2014 ISBN 8-582-71101-8
  5. Robert White, Chromatography/Fourier Transform Infrared Spectroscopy and its Applications, CRC Press, 1989 ISBN 0-824-78191-0 (em inglês)
  6. Frank H. Stephenson, Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory 2e , Academic Press, 2010 ISBN 0-123-75691-X (em inglês)
  7. Randy D. Down, Jay H. Lehr, Environmental Instrumentation and Analysis Handbook, John Wiley & Sons, 2005 ISBN 0-471-47332-4 (em inglês)
  8. Franklin H. Farmer, Olin Jarrett, Clarence A. Brown, United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch, Visible absorbance spectra: a basis for In Situ and passive remote sensing of phytoplankton concentration and community composition, National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1983 OCLC 9839377 - Biblioteca Digital HathiTrust’s NASA (em inglês)

Ligações externas

[editar | editar código-fonte]
Este artigo sobre ciência é um esboço. Você pode ajudar a Wikipédia expandindo-o.vde
{{bottomLinkPreText}} {{bottomLinkText}}
Absorbância
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?