For faster navigation, this Iframe is preloading the Wikiwand page for Zanurzenie (matematyka).

Zanurzenie (matematyka)

Zanurzenie (włożenie) – odwzorowanie różnowartościowe obiektu w obiekt zachowujące własności obiektu zanurzanego (to, o jakie własności chodzi, zależy od rozważanej teorii).

Istnienie zanurzenia implikuje istnienie w obiekcie podzbioru „identycznego” z obiektem

Teoria kategorii

[edytuj | edytuj kod]

W teorii kategorii odpowiednikiem zanurzenia jest monomorfizm. W zależności od rozpatrywanej kategorii, np. Set, Top, Gr, VectK, monomorfizmami są odwzorowania różnowartościowe, homeomorfizmy, homomorfizmy różnowartościowe, przekształcenia liniowe różnowartościowe[1].

Teoria mnogości

[edytuj | edytuj kod]

W teorii zbiorów zanurzeniem zbioru w zbiór jest funkcja różnowartościowa

Zbiór można wtedy utożsamić ze zbiorem gdzie

Twierdzenie

[edytuj | edytuj kod]

Jeśli dla zbiorów i istnieją zanurzenia

i

to istnieje funkcja różnowartościowa że

[2].

Twierdzenie to jest równoważne twierdzeniu Cantora-Bernsteina.

Dowód

Można założyć, że jest podzbiorem a funkcja realizuje to zawieranie. Niech będzie ciągiem określonym rekurencyjnie:

Niech Wtedy oraz

Funkcja

jest bijekcją, bo

skąd wynika, że jest injekcją (czyli odwzorowaniem różnowartościowym) oraz

skąd wynika, że jest surjekcją (czyli odwzorowaniem „na”)[3].

Topologia

[edytuj | edytuj kod]

Topologia ogólna

[edytuj | edytuj kod]

W topologii ogólnej zanurzeniem przestrzeni w przestrzeń nazywa się odwzorowanie takie że przestrzeń jest homeomorficzna ze swoim obrazem

Przykłady

[edytuj | edytuj kod]
  • Okrąg jest homeomorficzny z dowolną krzywą zamkniętą zwyczajną (z łukiem zamkniętym) w przestrzeni Oznacza to, że można okrąg zanurzyć w przestrzeni znajdując odwzorowanie różnowartościowe (zanurzenie), takie że obrazem okręgu jest pewna krzywa
  • W szczególności można badać łuki zamknięte na płaszczyźnie. Mogą one być regularne, jak płatki śniegu.

Mogą także przyjmować formy nieregularne.

Twierdzenie Jordana: Każdy łuk zamknięty na płaszczyźnie rozcina ją na dwa obszary i jest ich wspólnym ograniczeniem[4].

Teoria węzłów zajmuje się zanurzeniami okręgu w przestrzeń trójwymiarową.

Tablica wszystkich węzłów pierwszych z co najwyżej siedmioma punktami skrzyżowania

Topologia różniczkowa

[edytuj | edytuj kod]

W topologii różniczkowej zanurzeniem przestrzeni w przestrzeń jest dyfeomorfizm

Zwarta -wymiarowa rozmaitość gładka klasy gładkości (tzn. razy różniczkowalna) może być regularnie i dyfeomorficznie zanurzona w przestrzeń euklidesową o wymiarze Klasa gładkości dyfeomorfizmu jest równa [5].

Np. butelkę Kleina można dyfeomorficznie zanurzyć w przestrzeń euklidesową 5-wymiarową.

Topologia metryczna

[edytuj | edytuj kod]

Zanurzeniem przestrzeni metrycznej w przestrzeń metryczną jest izometria

Algebra

[edytuj | edytuj kod]

W algebrze zanurzeniami są homomorfizmy różnowartościowe struktur algebraicznych.

Teoria grup

[edytuj | edytuj kod]

Homomorfizm grupy multiplikatywnej w grupę multiplikatywną jest zanurzeniem, jeśli

Przykłady

[edytuj | edytuj kod]
  • Grupę obrotów płaszczyzny dokoła punktu (np. początku układu współrzędnych) można zanurzyć w grupę multiplikatywną ciała liczb zespolonych
gdzie dla kąta

Grupę można zatem utożsamić z okręgiem jednostkowym na płaszczyźnie zespolonej

Teoria ciał

[edytuj | edytuj kod]

Teoria pierścieni

[edytuj | edytuj kod]

Teoria modułów

[edytuj | edytuj kod]
  • Niech będzie pierścieniem przemiennym z jedynką. Podzbiorem multiplikatywnie zamkniętym w jest zbiór zawierający 1 i zamknięty względem mnożenia[10]. Niech będzie modułem nad pierścieniem Na iloczynie kartezjańskim można określić relację równoważności”:
⇔ dla pewnego zachodzi równość

Klasy równoważności tej relacji nazywa się ułamkami i oznacza się je a ich zbiór modułem ułamków Podobnie można określić pierścień ułamków Zbiór jest modułem nad pierścieniem Wtedy jeśli

jest zanurzeniem modułu w moduł

to odwzorowanie

jest zanurzeniem i [11].

Przypisy

[edytuj | edytuj kod]
  1. Semadeni, Wiweger, op. cit., s. 280–283.
  2. Kuratowski, Mostowski, op. cit., s. 12–13.
  3. Janusz Kaja, O twierdzeniu Cantora-Bernsteina.
  4. Wstęp do teorii mnogości i topologii, op. cit., s. 228–241.
  5. Pontriagin, op. cit., s. 21–22.
  6. Browkin J.: Teoria ciał. Wyd. 1. T. 49. Warszawa: PWN, 1977, s. 64, seria: Biblioteka Matematyczna.
  7. J. Browkin, op. cit., s. 65.
  8. Lang S.: Algebra. Warszawa: PWN, 1973, s. 189.
  9. Balcerzyk S., Józefiak T.: Pierścienie przemienne. Warszawa: PWN, 1985, s. 30. ISBN 83-01-04874-3.
  10. Zamkniętość względem mnożenia oznacza, że jeśli
  11. Атья М., Макдональд И.: Введеие в коммутативную алгебру. Москва: Мир, 1972, s. 52. (ros.).

Bibliografia

[edytuj | edytuj kod]
  • Z. Semadeni, A. Wiweger: Wstęp do teorii kategorii i funktorów. Wyd. 2. Warszawa: Państwowe Wydawnictwo Naukowe, 1978, seria: Biblioteka Matematyczna. Tom 45.
  • Jiri Adámek, Horst Herrlich, George E. Strecker: Abstract and Concrete Categories. 2005-01-18. [dostęp 2011-08-26]. (ang.).
  • K. Kuratowski, A. Mostowski: Teoria mnogości. Wyd. 2. T. 27. Warszawa: PWN, 1966, seria: Monografie Matematyczne.
  • K. Kuratowski: Wstęp do teorii mnogości i topologii. Wyd. 2. T. 9. Warszawa: PWN, 1962, seria: Biblioteka Matematyczna.
  • Л.С. Понтрягин: Гладкие многообразия и их применения в теории гомотопий. Wyd. 2. Москва: Наука, 1976.
  • J. Browkin: Teoria ciał. Wyd. 1. T. 49. Warszawa: PWN, 1977, seria: Biblioteka Matematyczna.
  • S. Lang: Algebra. Warszawa: PWN, 1973.
  • S. Balcerzyk, T. Józefiak: Pierścienie przemienne. Wyd. 1. T. 58. Warszawa: PWN, 1985, seria: Biblioteka Matematyczna. ISBN 83-01-04874-3.
  • М. Атья, И. Макдональд: Введеие в коммутативную алгебру. Москва: Мир, 1972. (ros.).
{{bottomLinkPreText}} {{bottomLinkText}}
Zanurzenie (matematyka)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?