For faster navigation, this Iframe is preloading the Wikiwand page for Esfèra.

Esfèra

Una esfèra

En geometria, una esfèra (del grèc σφαῖρα, «sfaira») es la superfícia formada per totes los punts de l'espaci tals que la distància (nomenada rai) a un punt determinat (nomenat centre) es totjorn la meteissa, formant una estructura de tres dimensions. Los punts que lor distància al centre es inferiora al rai constituisson una bola (lo solide interior a l'esfèra).

Dins un sistèma ortonormal de coordenadas, l'equacion de l'esfèra unitària (es a dire que son rai val 1) e centrada a l'origina de las coordenadas es: x² + y² + z² = 1

Aquela equacion s'obten en considerant lo punt M(x,y,z) de l'esfèra e lo modul del vector OM qu'es egal a 1.

Pus generalament l'esfèra de rai r, de centre Ω(a, b, c) a per equacion: (x - a)² + (y - b)² + (z - c)² = r²

L'equacion del plan tangent al punt M(x',y',z') s'obten per mejan del desdoblament de las variablas: dins lo cas de l'esfèra unitària: x·x' + y·y' + z·z' = 1

E al segond exemple: (x - a)·(x' - a) + (y - b)·(y' - b) + (z - c)·(z' - c) = r²

L'aira d'una esfèra de rai r es:   

Lo volum d'una bola (domeni interior a l'esfèra) de rai r es:   

Se consideram l'aira e lo volum coma foncions S(r) e V(r) del rai, alara se nòta que l'aira es la foncion derivada del volum. Aquel fach es pas un azard, perque se pòt descompausar lo volum en jaces d'espessor fòrça pichona dr (diferencial de r), e los volums d'aqueles jaces s'aproximan de S(r)·dr quand dr tend cap a 0. Addicionant los volums infinitesimals de totes aqueles jaces (en quantitat infinida) quand lo rai r es prèp de zèro a R dona per definicion l'integrala seguenta:

Zona e segment esferics

[modificar | Modificar lo còdi]

Una zona esferica es la partida de la superfícia esferica delimitada per dos plans parallèls que copan l'esfèra, formant dos cercles anomenats basas. L'aira de la zona esferica, d'una esfèra de rai r, delimitat per doas basas separadas per una nautor h es:

 A = 2 · π · r · h

Un segment esferic es lo solide delimitat per una zona esferica e los dos plans parallèls que lo delimitan. Lo volum del segment esferic, d'una esfèra de rai r, delimitat per doas basas, de rais a e b respectivament, separadas per una nautor h es:

 V = 1/6 · π · h · (h2 + 3·a2 + 3·b2)

I a un cas especial de zona esferica: la calòta esferica es una zona esferica delimitada per un sol plan que copa l'esfèra (un dels dos plans anteriors seriá tangent, o amb una basa de rai 0). Dins aquel cas, l'aira de la calòta se calcula coma per un segment de dos basas, e lo volum de la calòta seriá simplament:

 V = 1/6 · π · h · (h2 + 3·a2)

Un emisfèri es una calòta esferica delimitada per un sol plan que passa per un cercle maximum de l'esfèra.

Fusèl e còn esferics

[modificar | Modificar lo còdi]

Un fusèl esferic o lunula es una de las doas partidas (opausadas e simetricas) de la superfícia esferica delimitada per dos cercles maximums que se copan. L'aira d'un fusèl esferic, d'una esfèra de rai r, amb una longitud angulara de θ (l'angle de copa dels cercles maximums, en radians) es:

 A = 2 · r2 · θ

Un còn esferic es lo solide delimitat per un fusèl esferic, e los dos plans que lo delimitan, que se copan a l'axe de l'esfèra. Lo volum d'un còn esferic, d'una esfèra de rai r, amb una longitud angulara de θ (en radians) es:

 V = 2/3 · r3 · θ

Triangle esferic

[modificar | Modificar lo còdi]

Un triangle esferic es una partida de l'esfèra delimitada per tres cercles maximums que se copan. L'aira d'un triangle esferic, d'una esfèra de rai r, amb angles L, M e N (mesurats en radians) es:

 A = r2 · (L + M + N - π)

Sector esferic

[modificar | Modificar lo còdi]

Un sector esferic es lo solide limitat per una esfèra e la superfícia conica que son vertèx es al centre d'aquela esfèra. Se S es l'aira de la partida de l'esfèra que lo limita e r n'es lo rai, lo volum del sector val r S/3.

Ligams extèrnes

[modificar | Modificar lo còdi]
{{bottomLinkPreText}} {{bottomLinkText}}
Esfèra
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?