For faster navigation, this Iframe is preloading the Wikiwand page for Gauss-integral.

Gauss-integral

Grafisk fremstilling av Gauss-kurven i blått. Gauss-integralet gir størrelsen til arealet i rødt under kurven.

Gauss-integralet gir arealet under Gauss-kurven y = ex2. I tillegg til å være av betydning i forskjellige deler av matematikken, har det mange anvendelser i sannsynlighetsregning, statistisk mekanikk, kvantemekanikk og kvantefeltteori. Integralet er definert som

og gir opphav til mange andre, relaterte integraler. Dets navn er knyttet til Carl Friedrich Gauss selv om flere andre matematikere som Leonhard Euler, Pierre-Simon Laplace og Siméon Denis Poisson var kjent med det.

Beregning

[rediger | rediger kilde]

Det er ikke mulig å beregne det gaussiske integralet I  direkte fra de vanligste reglene for integrasjon. Men det lar seg gjøre fra det dobbelte integralet

som kan beregnes ved å innføre polarkoordinater x = r cosθ og y = r sinθ. Det gir

hvor verdien til den radielle integrasjonen følger fra eksponentialfunksjonen ved å innføre t = r 2 som ny integrasjonsvariabel. Dermed har man verdien I0 = √π av Gauss-integralet.

Relaterte integral

[rediger | rediger kilde]

Ved et skifte av integrasjonsvariabel har Gauss-integralet på litt mer generell form verdien

Tar man her den deriverte av begge sider med hensyn på parameteren a, finner man at

Fortsatte derivasjoner gir verdien av mer kompliserte integral.

En videre generalisering av Gauss-integralet er

som fremkommer ved å skrive eksponenten som et fullstendig kvadrat,

og så skifte integrasjonsvariabel til y = x - b/2a.

Sammenheng med gammafunksjonen

[rediger | rediger kilde]

Ved å bruke t = x 2 som ny variabel i Gauss-integralet, tar det formen

Det er derfor ekvivalent med den spesielle verdien Γ(1/2) = √π  for gammafunksjonen.

Mer generelle Gauss-integral kan gjøres på samme måte ved bruk av gammafunksjonen. For eksempel,

igjen etter substitusjonen xt = x 2 slik at dt = 2xdx. For n = 1 gir dette I 2 = Γ(3/2) = Γ(1/2 + 1) = (1/2)⋅Γ(1/2) = √π /2 i overenstemmelse med hva som tidligere ble funnet.

Litteratur

[rediger | rediger kilde]

Eksterne lenker

[rediger | rediger kilde]
{{bottomLinkPreText}} {{bottomLinkText}}
Gauss-integral
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?