For faster navigation, this Iframe is preloading the Wikiwand page for 米田の補題.

米田の補題

米田の補題(よねだのほだい、: Yoneda lemma)とは、小さなhom集合をもつ C について、共変あるいは反変hom関手 hom(A , _), hom(_, A) から集合値関手 F への自然変換と、値となる集合 F(A) の要素との間に一対一対応が存在するという定理である。「米田の補題」という名称は、米田信夫に因んでソーンダース・マックレーンにより名付けられた[1][2][3]。その主張は、マックレーンによれば、米田の仕事に早くから現れていたという[4]。ただし、エミリー・リール英語版によれば、この補題が初めて (明示的に) 論文に登場したのは Grothendieck (1960) である[5]

米田の補題は、普遍性という概念の根幹に関わる重要な補題であり、また、圏論において「間違いなく最も重要な結果である」[6]「もしかしたら最も利用されているただ1つの結果かもしれない」[7]と言われている。

概要

[編集]

主張の内容

[編集]

C を局所的に小さい(locally small)圏とする。すなわち C の各対象 A, B に対して hom(A, B) は集合であるとする。対象 A を固定するとき、共変hom関手 HA = hom(A, _) : CSet は対象 X に対して、集合 hom(A, X) を割り当て、射 f : XY に対して写像 hom(A, f) = f ◦ (_) : hom(A, X) → hom(A, Y) を割り当てる関手であった。さらに、 F : CSet を集合値関手とし、HA から F へのすべての自然変換のクラス Nat(HA, F) について考える。

このとき、米田写像(Yoneda map)と呼ばれる全単射が存在し、この同型は ACFSetC について自然である、という主張が米田の補題である。また、F が反変関手 CopSet である場合も、反変hom関手 HA = hom(_, A) との間にという全単射が存在して、これは AF について自然となる。このことはどちらも米田の補題と呼ばれる。

米田写像の対応

[編集]

関手 F は共変 (CSet) とする。このとき、共変hom関手 HA = hom(A, _) から F への自然変換 τ : HAF は、任意の C の射 f : XY に対して が定義から成り立つ。いま、f : AY の場合に、A での恒等射 idA がどのように写るかを追うことで、等式を得る。ここから、自然変換 τ : HAF の情報は から全て得られることがわかる。

証明

[編集]

米田写像 y を、自然変換 τ に対して で定める。y が全単射であることを示す。

単射性aF(A) に対して、自然変換 τ : HAF が存在して y(τ) = a であったとする。このとき、任意の射 f : AY に対して τ を満たす。これにより τ の全てのコンポーネントが一意に定まる、すなわちそのような τ は一意に定まるため、y は単射である。

全射性aF(A) を任意に固定する。C の対象 X それぞれに対して、写像 τX : hom(A, X) → F(X) で定める。このとき、f : XYg : AX に対して が成り立つことから、τX はある自然変換 τ : HAF のコンポーネントである。定義から τA(idA) = a であるため y(τ) = a が成り立つ。すなわち y は全射である。

補題の帰結

[編集]

普遍性

[編集]

集合値関手 F : CSet が、ある HA = hom(A, _) と自然同型であるとき、F表現可能関手 (representable functor) といい、AF の表現対象 (representing object) あるいは単に F の表現という。F が表現可能関手であるとき、米田の補題の帰結として次の主張が成り立つ。

定理 (Leinster 2014, Corollary 4.3.3) ― C が局所的に小さく、関手 F : CSet は表現可能とする。このとき、F の表現は以下の条件が成り立つような C の対象 AuF(A) の組によって構成される。

  • 任意の BCxF(B) の組に対して、C の射 x : AB がただ1つ存在して、Fx(u) = x が成り立つ。

逆に、上記定理の条件を満たす AuF(A) の組を F の普遍要素 (universal element) と呼ぶ。より一般に、関手 F : CDdD に対して、dF への普遍性 (universality) とは、ACD の射 u : dFA の組であって、任意の BCD の射 x : dFB に対して、C の射 x : AB がただ1つ存在して、Fxu = x が成り立つことを言う。

普遍要素の性質は一点集合からの普遍性と言えて、普遍性は D(d, F_) : CSet の普遍要素として表現できるため、普遍性・普遍要素・表現可能関手はそれぞれ互いの概念を包含する[8]

米田埋め込み

[編集]

米田写像の自然性から、対象 AC に関手 HA = hom(A, _)、あるいは HA = hom(_, A) を割り当てる操作は、関手

を構成する。米田の補題から であるため、H (H) は忠実充満であることが言える。このことから、H (H) を米田埋め込み (Yoneda embedding) とも呼ぶ。米田埋め込みは Y [9] [10][11]などの記号によって表されることもある。

関手 F : CSet に対して、F の「要素の圏」(category of elements) El A とは、XCxFX の組とその関係を保つ C の射からなる圏 (すなわち、米田埋め込み YC: CopSetC を用いたコンマ圏 YCF) のことである。El A から C の情報を取り出す関手を ΦF : El FCop と表すとき、FYC ◦ ΦF : El FSetC の余極限 (と同型) である[12]。つまり、任意の集合値関手は表現可能関手による余極限として表される。

前層の部分対象分類子

[編集]
部分対象分類子の可換図式

有限の極限を持つ圏 C 上の前層(英語: presheafとは C からの反変関手 P : CopSet のことであり、このとき前層の圏を ˆC = SetCop で表す。圏 ˆC部分対象分類子(英語: subobject classifierとは、(存在するならば) ˆC の対象 Ωモノ射 true : 1 → Ω (1終対象) であって、任意のモノ射 j : UX に対して、χjj = true かつその可換図式が引き戻しとなるような がただ1つ存在するようなものを言う。

前層の圏 ˆC への米田埋め込みを Y: CSetCop で表すとする。いま、ˆC に部分対象分類子 Ω : CopSet が存在するならば、特に YC = HomC(_, C) (CC) についてが成り立つ (右の同型が米田の補題から従う)。部分対象分類子の定義から、左辺の集合は YC の部分対象の集合と互いに1対1対応する。従って、等式全体が C について自然であることから、ˆC は必ず部分対象分類子を持ち、それは表現可能な前層 YC の部分対象を調べればよいことがわかる[13]

豊穣圏での補題

[編集]

豊穣圏とは、通常の圏におけるhom集合 (すなわち対象の間の射の集合) の代わりに、順序集合加法群、その他の対象 (一般には、あるモノイダル圏 V の対象として記述される) を割り当てるような一般化した構造であり、例えばこの意味で通常の圏は Set-豊穣圏、2-圏は Cat-豊穣圏と言える。豊穣圏の理論では、V の条件によって (具体的には完備かどうかによって) 米田の補題は強いものと弱いものに分けられる。

(弱い) 米田の補題 (Kelly 2005, p. 21, §1.9) ― V は対称モノイダル閉、AV-豊穣圏で K はその対象、F : AVV-関手とする。このとき、A(K, _) から F への V-自然変換の集合と、圏 V における I (モノイダル積の単位対象) から FK への射の集合の間には全単射が存在する。

(強い) 米田の補題 (Kelly 2005, pp. 33–34, §2.4) ― V は対称モノイダル閉かつ完備とする。このとき、V-関手 F : AVKA について、次の同型が V に存在する。

ただし豊穣圏の理論において「関手圏」[A, V] のhom対象 [A, V](A(K, _), F) にあたるものは、関手 V(A(K, _), F_)エンド英語版である。

脚注

[編集]
  1. ^ Kinoshita 1996
  2. ^ Kinoshita 1998
  3. ^ MacLane 1998a
  4. ^ Mac Lane 1998, p. 77
  5. ^ Riehl 2016, p. 57
  6. ^ Riehl 2016, p. 50
  7. ^ Awodey 2010, p. 191
  8. ^ Mac Lane 1998, pp. 57–61
  9. ^ Mac Lane (1998) など。
  10. ^ Johnson-Freyd, Theo; Scheimbauer, Claudia (2017-02-05). “(Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories” (英語). Advances in Mathematics 307: 147–223. arXiv:1502.06526. doi:10.1016/j.aim.2016.11.014. ISSN 0001-8708. https://www.sciencedirect.com/science/article/pii/S0001870816303164. 
  11. ^ Loregian, Fosco (2021). (Co)end Calculus. Cambridge: Cambridge University Press. arXiv:1501.02503. doi:10.1017/9781108778657. ISBN 978-1-108-74612-0. https://www.cambridge.org/core/books/coend-calculus/C662E90767358B336F17B606D19D8C43 2022年10月1日閲覧。 
  12. ^ Adámek, Rosický & Vitale 2010, p. 8, §0.14
  13. ^ Mac Lane & Moerdijk 1992, pp. 37–39

参考文献

[編集]

関連項目

[編集]
{{bottomLinkPreText}} {{bottomLinkText}}
米田の補題
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?