For faster navigation, this Iframe is preloading the Wikiwand page for Memristor.

Memristor

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini)
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Memristor di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)

Memristors /memˈrɪstɚ/ ("memory resistors") adalah kelas pasif terminal-dua elemen sirkuit yang menggunakan fungsi hubungan antara waktu integral dari arus dan tegangan. Hasil ini dalam hambatan bervariasi sesuai dengan perangkat fungsi memristansi. Secara spesifik teknik memristor menyediakan hambatan yang dapat terkontrol yang berguna untuk menyambungkan arus. Memristor merupakan kasus khusus dalam hal yang dikenal sebagai "sistem memristif", sebuah kelas dari model matematika yang berguna untuk mengamati fenomena tertentu secara empiris, seperti "firing" dari neuron.[1] Definisi dari memristor adalah didasarkan pada asas sirkuit variabel, mirip dengan resistor, kapasitor, dan induktor. Tidak seperti unsur-unsur yang lebih umum, yang tentu memristors nonlinear dapat dijelaskan oleh salah satu dari berbagai variasi fungsi waktu. Akibatnya, memristor termasuk model sirkuit linear time-invariant (LTI).

Teori memristor dirumuskan dan namai oleh Leon Chua dalam tulisannya pada tahun 1971. Chua sangat mempercayai bahwa perangkat elektronik yang ada tersusun atas resistor, induktor, dan kapasitor. Simetri ini dijelaskan unsur dasar sirkuit pasif yang didefinisikan oleh hubungan antara dua dari empat variabel sirkuit dasar, yaitu tegangan, arus, muatan dan flux.[2] Perangkat yang menghubungkan muatan dan flux (didefinisikan sebagai integral waktu dari arus dan tegangan),pada memristor, yang masih bersifat hipotesis. Dia memberi tahu bahwa peneliti lain sudah menggunakan hubungan tetap muatan-flux non linier.[3] However, it would not be until thirty-seven years later, on April 30, 2008, that a team at HP Labs led by the scientist R. Stanley Williams would announce the discovery of a switching memristor. Based on a thin film of titanium dioxide, it has been presented as an approximately ideal device.[4][5][6] Being much simpler than currently popular MOSFET switches and also able to implement one bit of non-volatile memory in a single device, memristors integrated with transistors may enable nanoscale computer technology. Chua also speculates that they may be useful in the construction of artificial neural networks.[7]

Teori memristor

[sunting | sunting sumber]
symbol memristor.

Memristor secara formal didefinisikan [3] sebagai unsur dua-terminal dalam magnetik flux Φm antara terminal sebagai fungsi dari jumlah dari muatan listrik q yang dilewati melalui perangkat. Setiap memristor dikarakterisasi oleh memristansi menjelaskan fungsi muatan-bergantung kecepatan dari perubahan flux dengan muatan.

Pengenalan hukum Faraday bahwa flux magnetik adalah integral fungsi of voltage,[8] dan muatan adalah integral waktu dari arus, dengan bentuk

jika M(q(t)) adalah tetap, kemudian kita mendapatkan Hukum Ohm R(t) = V(t)/ I(t). Jika M(q(t)) adalah nontrivial, bagaimanapun, persamaan adalah tidak sama sebab q(t) dan M(q(t)) dengan variasi waktu. Penyelesaian untuk tegangan sebagai fungsi dari waktu akan diperoleh

Persamaan ini menyatakan bahwa memristansi didefinisikan hubungan linear antara arus dan tegangan, selama tegangan tidak divariasikan. Of course, nonzero current implies instantaneously varying charge. Alternating current, however, may reveal the linear dependence in circuit operation by inducing a measurable voltage without net charge movement—as long as the maximum change in q does not cause much change in M.

Furthermore, the memristor is static if no current is applied. If I(t) = 0, we find V(t) = 0 and M(t) is constant. This is the essence of the memory effect.

The power consumption characteristic recalls that of a resistor, I2R.

As long as M(q(t)) varies little, such as under alternating current, the memristor will appear as a resistor. If M(q(t)) increases rapidly, however, current and power consumption will quickly stop.

Referensi

[sunting | sunting sumber]
  1. ^ Chua, L.O., dan Kang, S.M., Sistem dan perangkat memristif, Proceedings of the IEEE 64, 206, 1976
  2. ^ Shearer, J.L., Murphy, A.T., dan Richardson, H.H., Pengenalan sistem dinamik, Addison-Wesley, Reading, Mass., 1967. Figure 4.4.
  3. ^ a b Chua, Leon O (September 1971), "Memristor—The Missing Circuit Element", IEEE Transactions on Circuit Theory, CT-18 (5): 507–519, doi:10.1109/TCT.1971.1083337 
  4. ^ Tour, James M; He, Tao (2008), "Electronics: The fourth element", Nature, 453: 42–43, doi:10.1038/453042a 
  5. ^ Strukov, Dmitri B; Snider, Gregory S; Stewart, Duncan R; Williams, Stanley R (2008), "The missing memristor found", Nature, 453: 80–83, doi:10.1038/nature06932 
  6. ^ Marks, Paul (2008-04-30). "Engineers find 'missing link' of electronics". New Scientist. Diarsipkan dari versi asli tanggal 2008-05-01. Diakses tanggal 2008-04-30.  See also: "Researchers Prove Existence of New Basic Element for Electronic Circuits -- Memristor'". Physorg.com. 2008-04-30. Diakses tanggal 2008-04-30. 
  7. ^ "'Missing link' memristor created". EETimes. 2008-04-30. Diarsipkan dari versi asli tanggal 2012-03-05. Diakses tanggal 2008-04-30. 
  8. ^ Knoepfel, Heinz (1970). Pulsed high magnetic fields. New York: North-Holland. hlm. p. 37, Eq. (2.80). .
{{bottomLinkPreText}} {{bottomLinkText}}
Memristor
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?