For faster navigation, this Iframe is preloading the Wikiwand page for Standard modell.

Standard modell

Az elemi részecskék standard modellje
Ez a szócikk a részecskefizika standard modelljét tárgyalja. A kozmológiai standard modellel az ősrobbanás szócikk foglalkozik.

A részecskefizika standard modellje (gyakran magyarban is nagy kezdőbetűkkel írják: Standard Modell (SM), ejtsd sztenderd modell) az elektromágneses, a gyenge és erős kölcsönhatást, valamint az alapvető elemi részecskéket leíró kvantumtérelmélet. Összhangban van a kvantummechanikával és a speciális relativitáselmélettel. Majdnem minden kísérleti teszt igazolja jóslatait, a korábbi kivételek legjelentősebbikét, a Higgs-bozon létezését már igazolták. A modell közvetlen előzményei és részei az elektrogyenge kölcsönhatások modellje (Glashow–Weinberg–Salam-modell) és az erős kölcsönhatások elmélete, a kvantum-színdinamika (QCD).

A standard modell

[szerkesztés]

Részecsketípusai

[szerkesztés]
Az elemi részecskék kölcsönhatásainak egyszerűsített ábrázolása a standard modell szerint

A modell alapvető részecskéi között vannak egyrészt az anyagot felépítő ún. anyagi részecskék. Ezek mind feles spinűek, azaz fermionok. A kvarkok és leptonok tartoznak ide. A fermionokra érvényes Pauli-elv miatt nem omlik össze egy anyaghalmaz, hanem kénytelen egy bizonyos térfogatot kitölteni. A kvarkok az erős és elektrogyenge kölcsönhatásban is részt vesznek, míg a leptonok csak az elektrogyengében.

A másik típusú részecskék a – kölcsönhatásokat – közvetítő részecskék. Az elektrogyenge kölcsönhatást közvetítő foton, két W-bozon, és a Z-bozon valamint az erős kölcsönhatást közvetítő gluonok tartoznak ide. Ezek mind egyes spinűek, azaz bozonok, spinjük miatt vektorbozonoknak is mondjuk őket. Bozonokra nincs Pauli-kizárás, ezek közül akárhány lehet azonos kvantumállapotban, ami nagyon sok bozonnal nagyon kifinomult kölcsönhatást tesz lehetővé.

A harmadik típusú részecske a már kísérletileg is igazolt nulla spinű Higgs-bozon, amiből a standard modellben egy van, de a kiterjesztett elméletekben több. A Higgs-bozon az önmagával és a többi részecskével való kölcsönhatásaival tömeget „kölcsönöz” az anyagi részecskéknek és a közvetítő részecskék egy részének.

Szimmetriája és sérülése

[szerkesztés]

A modell egy mértékelmélet, amelynek a Lagrange-függvénye tehát lokálisan invariáns egy mértékcsoport transzformációival szemben. A mértékcsoport esetünkben az SU(3)×SU(2)×U(1). A közvetítő bozonokat a modell mértékterei írják le, ezért őket mértékbozonoknak is hívjuk. A mértékterek a klasszikus elektrodinamika (skalár- és vektor)potenciáltereinek kvantumtérelméleti megfelelői.

A Higgs-bozon nélkül azonban a standard modell, ami az említett mértékcsoporttal szemben mértékinvariáns, nem nyújtaná reális leírását a világnak. A mértékinvariancia fenntartása esetén ugyanis a modell részecskéinek nem lehetne tömegük, márpedig az elemi részecskék többségének van tömege. Ha ezeket a tömegeket kézzel beletennénk a Lagrange-függvénybe – amiből a hatáselv segítségével a mozgásegyenletek származtathatók – akkor ezzel nemcsak a mértékinvarianciát rontanánk el – amit el is kell rontanunk, hiszen az SU(2)-szimmetria a világnak szemmel láthatóan nem egzakt szimmetriája, hanem egy fontos elvi problémába is ütköznénk. Az elmélet nem lenne renormálható, azaz a számítások közben fellépő végtelen mennyiségeket nem lehetne konzisztens módon eltávolítani hozzárendelve őket véges számú fizikai mennyiséghez – például töltés –, mintegy „lenyeletve” őket velük.

Ennek orvoslására találta ki Peter Higgs még a standard modell felépítése előtt a Higgs-mechanizmust, ami egy mértékinvariáns skalártér nem mértékinvariáns alapállapotán keresztül spontán sérti a mértékinvarianciát. Esetünkben csak egy részét, az alapállapot ugyanis mértékinvariáns marad egy SU(3)×U(1) mértékcsoporttal szemben, azaz csak a gyenge kölcsönhatás mértékinvarianciája sérül, alacsony energián, azon, amelyen mi is látjuk a világot. Nagy energiájú folyamatoknál a szimmetria kezd helyreállni. A sértés előtti és utáni U(1) szimmetria egyébként nem ugyanaz az U(1), előtte a hipertöltéshez, utána az elektromos töltéshez kapcsolódó szimmetriáról van szó. Valójában tehát nem az SU(2) sérül a semmire, hanem az SU(2)×U(1) szimmetria egy másik U(1)-re.

A Higgs-mechanizmuson keresztül a sértett szimmetriához tartozó mértékbozonok és a hozzá tartozó kölcsönhatásban részt vevő anyagi részecskék tömeget nyernek a Higgs-bozon belső átrendeződése folytán. Elveszíti ugyanis három szabadsági fokát az eredeti négy közül, s ez a három csatlakozik a sértett gyenge kölcsönhatás így tömeget nyerő három mértékbozonjához.

Részecskecsaládok

[szerkesztés]

Az anyagi részecskéket három családba rendezhetjük, mindegyikbe a hat-hatféle kvarkból (kvarkízből) ill. leptonból (leptonízből) kettő-kettőt téve (ld. a táblázatot). A LEP kísérleteinek sikerült 1989-ben bebizonyítaniuk, hogy csak három család létezik. Ezt a Z-bozon szélességének mérésével érték el. A standard modell nem nyújt azonban elméleti magyarázatot arra, miért van ez így. Erre a nagy egyesített elmélettől várunk magyarázatot. Anyagi világunk túlnyomó többségét az első család fermionjai építik fel.

Táblázat

[szerkesztés]
Balkezes Standard modellben
1. család
Fermion (Balkezes) Jelölés Elektromos töltés Gyenge töltés* Gyenge izospin Hipertöltés Színtöltés* Tömeg**
Elektron −1 −1/2 −1/2 0.511 MeV
Elektron-neutrínó 0 +1/2 −1/2 < 50 eV
Pozitron +1 0 +1 0.511 MeV
Elektron-antineutrínó 0 0 0 < 50 eV
Up kvark +2/3 +1/2 +1/6 ~5 MeV ***
Down kvark −1/3 −1/2 +1/6 ~10 MeV ***
Anti-up antikvark −2/3 0 −2/3 ~5 MeV ***
Anti-down antikvark +1/3 0 +1/3 ~10 MeV ***
 
2. család
Fermion (balkezes) jelölés Elektromos töltés Gyenge töltés* Gyenge izospin Hipertöltés Színtöltés* Tömeg**
Müon −1 −1/2 −1/2 105.6 MeV
Müon-neutrínó 0 +1/2 −1/2 < 0.5 MeV
Antimüon +1 0 +1 105.6 MeV
Müon-antineutrínó 0 0 0 < 0.5 MeV
Bájos kvark +2/3 +1/2 +1/6 ~1.5 GeV
Ritka kvark −1/3 −1/2 +1/6 ~100 MeV
Anti-bájos antikvark −2/3 0 −2/3 ~1.5 GeV
Anti-ritka antikvark +1/3 0 +1/3 ~100 MeV
 
3. család
Fermion (balkezes) Jelölés Elektromos töltés Gyenge töltés* Gyenge izospin Hipertöltés Színtöltés* Tömeg**
Tau lepton −1 −1/2 −1/2 1.784 GeV
Tau-neutrínó 0 +1/2 −1/2 < 70 MeV
Anti-Tau +1 0 +1 1.784 GeV
Tau-antineutrínó 0 0 0 < 70 MeV
Top kvark +2/3 +1/2 +1/6 173 GeV
Bottom kvark −1/3 −1/2 +1/6 ~4.7 GeV
Anti-top antikvark −2/3 0 −2/3 173 GeV
Anti-bottom antikvark +1/3 0 +1/3 ~4.7 GeV

* – Ezek nem közönséges abeli töltések, amelyek összeadhatók egymással, hanem Lie-csoportok csoportreprezentációinak címkéi.

** – A tömeg valójában a balkezes és jobbkezes fermionok közötti csatolás. Például az elektron tömege valójában a balkezes elektron és a jobbkezes elektron – ami a balkezes pozitron antirészecskéje – közötti csatolás. A neutrinók viszont nagy keveredést tanúsítanak a tömegcsatolásuk során az egyes ízek között, úgyhogy nem pontos dolog ízbázison neutrínó tömegről beszélni, vagy azt sugallni, hogy a balkezes és jobbekezes neutrínónak ugyanaz a tömege, mint ez a táblázat is teszi.

*** – Amit valójában mérünk, az a hadronok tömege, valamint számos hatáskeresztmetszet. Mivel a kvarkok nem elkülöníthetők a kvarkbezárás miatt, az itt levő értékről feltesszük, hogy az a kvark tömege a QCD renormálási skálájánál (fázisátmenet). Ezen érték kiszámításához rács mértékelméleti számításokat kell végezni a hadronspektrum meghatározásához, kipróbálva számos tömegértéket, amíg a modell nem ad a kísérleti adatokhoz közeli értékeket. Mivel az első család kvarkjai jelentősen a QCD-skála alatt vannak, a bizonytalanságok meglehetősen nagyok. Történetesen a legutóbbi rács-QCD számítások a táblázatban foglaltaknál jelentősen kisebb értékeket adnak.

Előrejelzések és tesztjeik

[szerkesztés]

A standard modell megjósolta a W- és Z-bozonok, a gluonok, a top kvark és a charm kvark létezését mielőtt felfedezték volna azokat. Azok a paramétereik, melyeket előre tudtak jelezni nagyon jól egyeztek a kísérletileg mért értékekkel.

A CERN nagy elektron-pozitron ütköztetőgyűrűje több előrejelzést vizsgált a Z-bozon bomlásával kapcsolatban, és egyezőnek találta azokat.

Pár adatot olvashatunk alább arról, hogy milyen számszerű értékeket jelzett előre a modell, és milyen értékeket mértek később:

Mennyiség Mért érték (GeV) SM jóslat (GeV)
W-bozon tömeg 80,4120±0,0420 80,3900±0,0180
Z-bozon tömeg 91,1874±0,0021 91,1874±0,0021

Feynman-diagramok

[szerkesztés]
Bővebben: Feynman-diagram

A kölcsönhatásokat Feynman-diagramon, vagy ennek matematikai modelljén, Feynman-gráfon szokták ábrázolni. A részecskéket különböző vonalak jelképezik, és a vonalak találkozása egy kölcsönhatást jelöl. A fermionokat egyenesek, a gluonokat rugósszerű vonalak, bozonokat hullámvonalak jelölik.

A standard modell hiányosságai

[szerkesztés]

A standard modell nem tartalmazza a részecskék világában kis jelentőségű gravitációt és nem egyesíti az erős kölcsönhatást sem az elektrogyenge kölcsönhatással, amilyen módon az elektrogyenge elmélet egyesíti az elektromágneses kölcsönhatást és a gyenge kölcsönhatást. A standard modell nem képes számot adni az elméletben szereplő 19 (!) szabad paraméter értékéről (részecsketömegek, keverési szögek, csatolási erősségek). A standard modell komplikációi számos problémába csoportosíthatók:

  • 1. mértékprobléma: A standard modell három mértékcsoport direkt szorzata, amelyek közül csak az elektrogyenge rész paritássértő. A modell tartalmazza, de nem magyarázza az elektromos töltés kvantáltságát (ez nagyon fontos az atomok semlegessége szempontjából). Megoldást jelenthet többek között a nagy egyesített elmélet (GUT) vagy a mágneses monopólusok létezése.
  • 2. fermionprobléma: A közönséges földi anyagok az első családból megkonstruálhatók. Nem tudjuk, miért van három család, amelyek közül a másik kettő az elsőnek nehéz másolata. Nem ad magyarázatot a fermionok tömegére, amelyek ráadásul öt nagyságrendi különbségen belül szórnak. Megoldást jelenthetnek összetett fermionok, családszimmetriák, extra téridő dimenziók, például szuperhúrok.
  • 3. Higgs/hierarchia-probléma: A standard modell egy Higgs-bozont tartalmaz – amit 2012, július 4-én jelentettek be, hogy sikerült ki is mutatni – a W-,Z- és fermiontömegek generálása céljából. A Higgs-bozon tömege nem lehet túl nagy (elméleti megfontolások és a kísérleti eredmények alapján <1 TeV), mert különben túl erős lenne az önkölcsönhatása (A 2012, júl. 4-én bejelentett érték 125-126 GeV). A magasabb rendbeli számolások viszont divergens járulékot adnak a tömegéhez, és a végtelen értéket csak úgy lehet elkerülni, ha történik valami magasabb energiákon, azaz valami új elmélet kezd érvényessé válni. Ilyenek lehetnek a nagy egyesített elméletek, de ez 1014 GeV nagyságú Higgs-tömeghez vezetne, vagy a gravitáció belépése, ami viszont a Planck-tömeg (1019 GeV) nagyságúhoz, azaz 1 TeV-nél jóval nagyobbakhoz. Megoldást összetett W- és Z-bozonok (de ezzel eldobnánk a rendkívül sikeres SU(2)×U(1) elektrogyenge elméletet), Higgs-bozon helyett fermion kötött állapotok, a technicolor vagy összetett Higgs-részecskék jelenthetnének. A talán legnépszerűbb megoldást a szuperszimmetria létezése jelentené.
  • 4. erős CP-probléma: A standard modellbe bevezethető egy P-, T- és CP-sértő tag, ami a neutronnak elektromos dipólmomentumot adna. Ennek létező kísérleti limitjei viszont a bevezetendő tag együtthatója 10−10 nagyságrendű lenne. Ez a kis szám nem érthető, ahogy általában a sok nagyságrenddel eltérő paraméterek nem elfogadhatóak. A megoldást a CP-sértés jelenlegi explicit mechanizmusa helyett például egy spontán sértett extra U(1) szimmetria bevezetése jelenthetné, ami viszont egy új részecske, az axion megjelenésével járna.
  • 5. gravitonprobléma: a gravitáció kívül esik a standard modellen és az általános relativitáselméletet – ami nem kvantumelmélet – nem is lehet a többi kölcsönhatás elmélete módjára kvantumtérelméletté tenni. Egy másik probléma a kozmológiai állandóé. Ez a vákuum energiájának tekinthető, aminek értéke a spontán szimmetriasértés során a megfigyelhető értéknél 50 nagyságrenddel nagyobb korrekció során alakul ki, ami nyilvánvalóan elfogadhatatlan. A megoldást itt Kaluza-Klein-modellek, szupergravitáció, sokdimenziós szupermembrán-elméletek felé keresik.
  • 6. neutrínóprobléma vagy napneutrínó-probléma: az érvényes napmodellekhez képest a Földre a Napból a vártnál jóval kevesebb neutrínó érkezik, mintha a Nap energiatermelése az észleltnél jóval kisebb lenne, vagy valami történne a neutrínókkal útközben. A jelenlegi földi kísérletek az elektron-neutrínókat tudják érzékelni, azaz például ha ezek müon-neutrínókká tudnak átalakulni ún. neutrínóoszcilláció során, akkor magyarázni tudjuk a hiányt. Ehhez a standard modellel ellentétben a neutrínóknak tömeggel kell rendelkezniük. 1998-ban erre a Super-Kamiokande kísérlet bizonyítékot talált, s emiatt újabb 10 paramétert kell bevezetni a standard modellbe.
  • 7. csatolási állandók problémája: a három kölcsönhatás csatolási állandói különbözőek, ami gátja az egyesítésnek, mert ahhoz egy univerzális csatolási állandóval kell rendelkezniük. Szerencsére a három csatolási állandó energiafüggő és 1015 GeV környékén értékük közel ugyanaz, ami azt jelzi, hogy ez a nagy egyesített elméletek skálája. Sajnos azonban nem egy, hanem három különböző pontban metszi egymást a három csatolási állandó, márpedig az egyesítéshez egy közös metszésponttal kellene rendelkezniük. A szuperszimmetrikus elméletek ezt a problémát megoldják.
  • 8. sötét anyag problémája Az Univerzum anyagának többségét nem látjuk, csak a gravitációját érezzük. Mi lehet ez az anyag? Tömeges neutrínók? A legkönnyebb szuperszimmetrikus részecskék, amiket megmaradási törvény véd a bomlástól (R-paritás)? Valami egyéb?

Külső hivatkozások

[szerkesztés]
{{bottomLinkPreText}} {{bottomLinkText}}
Standard modell
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?