For faster navigation, this Iframe is preloading the Wikiwand page for Sűrű gráf.

Sűrű gráf

A matematika, azon belül a gráfelmélet területén egy sűrű gráf alatt olyan gráfot értünk, melyben az élek száma közel áll az élek maximális lehetséges számához. Ennek az ellentéte, a ritka gráf a viszonylag kevés éllel rendelkező gráf. A sűrű és ritka gráfok közötti különbségtétel önkényes, a szövegkörnyezettől függhet.

Irányítatlan egyszerű gráfokon egy gráf sűrűsége a következővel egyezik meg:

Irányított egyszerű gráfok sűrűsége pedig így határozható meg:

ahol E a gráf éleinek, V a csúcsainak a száma. Irányítatlan gráfban az élek maximális száma ½ |V| (|V|−1), tehát a maximális sűrűség 1 (a teljes gráfok esetében), a minimális pedig 0 (Coleman & Moré 1983).

Felső sűrűség

[szerkesztés]

A felső sűrűség a gráfsűrűség fogalmának kiterjesztése véges gráfokról végtelen gráfokra. Intuitív megközelítésben egy végtelen gráfnak lehetnek a felső sűrűségénél kisebb sűrűségű, tetszőlegesen nagy véges részgráfjai, de nem lehetnek a felső sűrűségnél nagyobb sűrűségű, tetszőlegesen nagy véges részgráfjai. Formálisan, egy G gráf felső sűrűsége azon α értékek infimuma, melyekre G α sűrűségű véges részgráfjai korlátos számú csúccsal rendelkezhetnek. Az Erdős–Stone-tétel segítségével megmutatható, hogy a felső sűrűség értéke vagy 1, vagy a szuperpartikuláris arányok valamelyike: 0, 1/2, 2/3, 3/4, 4/5, ... n/(n + 1), ... (lásd pl. Diestel, p. 189).

Ritka és éles gráfok

[szerkesztés]

(Lee & Streinu 2008) és (Streinu & Theran 2009) definíciója szerint egy (k,l)-ritka gráf (sparse graph) minden nem üres részgráfjának n csúcsa között legfeljebb kn − l él húzódik, a (k,l)-éles gráf (tight graph)[1] pedig (k,l)-ritka és pontosan kn − l éllel rendelkezik. Így a fák az (1,1)-éles gráfokkal egyeznek meg, az erdők az (1,1)-ritka gráfok, a k arboricitású gráfok pedig a (k,k)-ritka gráfok. A pszeudoerdők (az összefüggő komponensenként legfeljebb 1 körrel rendelkező irányítatlan gráfok) az (1,0)-ritka gráfokkal egyeznek meg, a merevségelmélet Laman-gráfjai pedig a (2,3)-éles gráfokkal.

Más, a ritkaságukkal nem jellemezhető gráfcsaládokról is tehetők hasonló kijelentések. Például az n csúcsú síkgráfok legfeljebb 3n − 6 éllel rendelkeznek, és bármely síkgráf részgráfjai is síkgráf – ebből a két kijelentésből következik, hogy a síkgráfok (3,6)-ritka gráfok. Nem igaz viszont, hogy bármely (3,6)-ritka gráf síkgráf lenne. Hasonlóan kijelenthető, hogy a külsíkgráfok (2,3)-ritkák és a páros síkgráfok (2,4)-ritkák.

Streinu és Theran igazolta, hogy a (k,l)-ritkaságra való tesztelés polinom időben elvégezhető, ha k és l olyan egész számok, melyekre 0 ≤ l < 2k.

Ha egy gráfcsalád esetén létezik olyan k és l, melyekre a családbéli gráfok (k,l)-ritkák, akkor a gráfok degeneráltsága vagy arboricitása korlátos. Precízebben kimondva, (Nash-Williams 1964) eredményéből következik, hogy a legfeljebb a arboricitású gráfok éppen az (a,a)-ritka gráfok; a legfeljebb d degeneráltságú gráfok pedig éppen a ((d + 1)/2,1)-ritka gráfok.

Ritka és sűrű gráfosztályok

[szerkesztés]

(Nešetřil & Ossona de Mendez 2010) arra jutott, hogy a ritkaság/sűrűség dichotómia miatt szükséges egyes gráfok helyett végtelen gráfosztályokat tekintetbe venni. Úgy definiálták a valahol sűrű (somewhere dense) gráfosztályt, mint azokat a gráfosztályokat, melyekben létezik t küszöbérték, melyre minden teljes gráf megjelenik az osztály egy gráfjának t-felosztásaként. Ha ilyen küszöbérték nem létezik, a gráfosztály sehol sem sűrű (nowhere dense). A sehol sem sűrű és valahol sűrű gráfosztályok dichotómiáját (Nešetřil & Ossona de Mendez 2012) elemzik.

A korlátos degeneráltságú gráfok és a sehol sem sűrű gráfok mind beletartoznak a biklikkmentes gráfok osztályába, melyek a teljes páros gráfot részgráfként nem tartalmazó gráfcsaládok(Telle & Villanger 2012).

Kapcsolódó szócikkek

[szerkesztés]
  • Sűrű részgráf

Fordítás

[szerkesztés]
  • Ez a szócikk részben vagy egészben a Dense graph című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

Jegyzetek

[szerkesztés]
  1. az „éles” szó itt a matematikai zsargonban használt éles, tovább már nem javítható eredményre utal
{{bottomLinkPreText}} {{bottomLinkText}}
Sűrű gráf
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?