For faster navigation, this Iframe is preloading the Wikiwand page for Miller-ciklus.

Miller-ciklus

Ez a szócikk vagy szakasz lektorálásra, tartalmi javításokra szorul. A felmerült kifogásokat a szócikk vitalapja részletezi (vagy extrém esetben a szócikk szövegében elhelyezett, kikommentelt szövegrészek). Ha nincs indoklás a vitalapon (vagy szerkesztési módban a szövegközben), bátran távolítsd el a sablont!Csak akkor tedd a lap tetejére ezt a sablont, ha az egész cikk megszövegezése hibás. Ha nem, az adott szakaszba tedd, így segítve a lektorok munkáját!

Az Atkinson-ciklusú motorok a hatásfok növelését és a károsanyag-kibocsátás csökkentését azon az alapon érik el, hogy a munkavégző ütem lökettérfogata nagyobb, mint a sűrítő ütemé. Az Atkinson-ciklust mechanikus megoldásokkal megvalósító motorok szerkezete szignifikánsan eltér a hagyományos Otto-motorokétól.

Egészen kis szerkezeti változtatással is megvalósítható azonban az eltérő sűrítési és munkavégzési lökettérfogat megvalósítása az Atkinson-Miller, más megjelöléssel Miller-ciklus alapján.

A Miller-ciklus [1] termodinamikai körfolyamat, melyet négyütemű motorral valósítanak meg. Ralph Miller amerikai mérnök az 1940-es években fejlesztette ki a Diesel-ciklus módosításával [2]. Célja az volt, hogy a magas kompresszióarányú feltöltős Diesel-gépekben résztöltés révén korlátozza a túlságosan magas csúcshőmérséklet kialakulását, amely a kenőolaj-film leégését, ezzel a motorok élettartamának csökkenését okozza. A résztöltést a szívószelep nyitási idejének korlátozásával oldotta meg. 4 ütemű Otto-motorok esetén szintén megvalósítható a Miller-ciklus, amely a szelepvezérlés módosításával éri el a hatásfok javulását. A továbbiakban az utóbbi rendszerű gépek működését elemezzük. A hagyományos négyütemű Otto-motor veszteségeinek nagy része – ha most a mechanikus veszteségektől eltekintünk – abból adódik, hogy a munkavégző ütem végén az égéstermékek hőmérséklete és nyomása még elég nagy lenne ahhoz, hogy mechanikus energiát szolgáltasson, de a kipufogó szelepen hasznosítatlanul távozik. A hatásfok javítására elsősorban a munkavégző ütem megnyújtása, vagyis a kompresszióviszony növelése alkalmas, de ennek határt szab a keverék öngyulladásának, a kopogásnak a fellépése. A motorból kivehető mozgási energiát csökkenti a sűrítési ütemben a kompresszióra fordított energia is, ezért minden változtatás, mely a kompresszió energiaszükségletét csökkenti, szintén javítja a motor hatásfokát és tüzelőanyag fogyasztását.

A Miller-ciklus újítása az, hogy a szívószelepet az Otto-motorhoz képest hosszabb ideig hagyja nyitva. Ennek eredményeképpen a kompresszió-ütem két részre tagozódik: az első részben a szívószelep nyitva van, míg a második részben zárva van. E miatt a kétrészes szívás miatt a motort ötütemű motornak is hívják.

A Miller-ciklus alapján működő motorok szerkezete első közelítésben semmiben sem különbözik egy – célszerűen változtatható szelepvezérlésű – Otto-motortól [3]. A késleltetett szívószelep-zárást alkalmazó Miller-ciklus p – V diagramja nagyfokú hasonlóságot mutat egy nagy kompresszióviszonyú Otto-motoréval (1. diagram). Az eltérés annyi, hogy a sűrítést ábrázoló elvi görbe kezdő szakasza itt nem az adiabatikus folyamatra jellemző görbe, hanem egyenes, mivel a sűrítési ütem kezdetén a beszívott keverék visszaáramlik, és a tényleges sűrítés csak később kezdődik. A résztöltés miatt a teljesítmény/lökettérfogat arány bizonyos mértékben romlik. A javuló hatásfok miatt azonban azonos motorteljesítmény eléréséhez nem szükséges a lökettérfogatot olyan mértékben növelni, mint az az első közelítésből adódna.

1. Elemezzük a Szigorúan vett Miller-ciklust megvalósító motor két változatát! Mindkét megoldás szerint nagy sűrítési viszonyú motort alkalmaznak, példaként legyen az 1,4 literes négyhengeres motor sűrítési aránya 13 :1. Teljes töltés esetén a nagy kompresszióviszony alapvető problémát okozna a keverék öngyulladása (kopogás) miatt. A résztöltés miatt azonban a sűrítési ütem végén a keverék nyomása és felmelegedése nem haladja meg a normál Otto-motorét (példánkban legyen ez egy 9:1 sűrítési arányú 1 literes négyhengeres motor). A motor termikus hatásfoka jóval kedvezőbb a 9:1 sűrítési arányú Otto-motorénál, közelíti a Diesel-motorok hatásfokát, mivel az égéstermékben rejlő energiát a hosszabb munkavégző ütem során nagyobb arányban alakítja át mechanikus energiává.

Az alábbi két elvi megoldás mindössze a szelepvezérlés módosítását jelenti. Közös alapelvük az, hogy a módosítás eredményeképpen a henger résztöltését valósítják meg.

1.1. Az első megoldás egyszerűsített leírása az 1. diagramon követhető – most figyelmen kívül hagyva a szelepnyitás/zárás átmeneti jelenségeit. A szívószelepek nem zárnak a szívási ütem végén, hanem nyitva maradnak a sűrítési ütem kezdetén addig a pontig, ahonnan a sűrítési arány 9:1 arányban számítható (C’ pont). A nyitva maradó szelepeken a dugattyú a beszívott keverék egy részét kitolja a hengerből. A tényleges sűrítés során a keverék összesűrítése, tehát felmelegedése is ennek következtében a 9:1 sűrítési arányú motorénak fog megfelelni, és a sűrítési munka is csak ezzel az 1 literes motoréval lesz egyenlő. A munkavégzési ütem a 13:1 sűrítési aránynak megfelelő hosszúságú lesz, így jobban hasznosul az elégett keverék energiatartalma. Bizonyos energiaveszteséget okoz ennél a megoldásnál a szívó ütem végén beszívott felesleges keverék beszívására és kitolására fordított energia. Ez a megoldás igényli a kitolt felesleges keverék problémájának kezelését is.

1.2. A töltéscsere miatti energiaveszteség részben csökkenthető. Ennél a megoldásnál a szívószelepek még a szívó ütem vége előtt záródnak, annál a pontnál, ahol az 1.1. pontban leírt megoldásnál a sűrítési ütem kezdete után záródtak (a 2. diagramon B pont). A henger résztöltése tehát ugyanolyan arányú lesz, és a sűrítési ütem végén a keverék összesűrítése is a 9:1 sűrítési arányú Otto-motoréval lesz azonos. Ennél a megoldásnál nem jelentkezik az előző konstrukcióban fellépő felesleges keverék problémája, és elmarad annak beszívásához és kitolásához szükséges energiaveszteség is. Ugyanis a szívószelep záródása után a dugattyúnak a löket alsó pontjáig tartó B-B’, majd onnan vissza a B helyzetbe történő mozgása során lejátszódó adiabatikus depresszió/kompresszió reverzibilis folyamatában az energiaszükséglet és energia nyerés kiegyenlíti egymást a termikus hatásfok szempontjából. Egyszerűsítve úgy mondhatjuk, hogy a dugattyú lefelé mozgása során a hengerben fellépő vákuum ellen végzett mozgás (B helyzet – B’ alsó holtpont között) ugyanannyi energiát igényel, amennyit a külső légnyomás a dugattyúnak a visszanyomásával végez (B’ alsó holtpont – B helyzet). Az energiaigénnyel járó tényleges sűrítés csak innen kezdődik.

2. A Miller-ciklusúak közé sorolják azokat a megoldásokat, ahol a szívószelepek késleltetve záródnak függetlenül attól, hogy a folyamat mennyire közelíti meg az elméleti Miller-ciklust. Sorozatgyártású autókban már megjelentek ilyen kompresszoros motorok.

Amikor a dugattyú a szívó ütem befejeződése után az alsó holtponttól felfelé indul, a beszívott keverék részben visszaáramlana a még nyitott szívószelepen keresztül. A kompresszoros Miller-motornál azonban a beáramló keverék megnövelt nyomása a visszaáramlást megakadályozza, sőt a sűrítést a dugattyú alsó holtpontja közelében, ahol a dugattyú mozgása viszonylag még lassú, a kompresszor végzi. A tulajdonképpeni sűrítés a szívószelepek bezárásakor kezdődik, a dugattyú útjának körülbelül 30%-ánál. A feltöltős motorok problémája itt is jelentkezik, kis fordulatszámoknál a motor nyomatéka nagyon rossz. A hátrány csökkentésére a Miller-motornál térfogat-kiszorításos elven működő feltöltőkompresszort (Roots-fúvót vagy csavarkompresszort) használnak, amely viszonylag kis fordulatszámnál is elfogadható nyomást szolgáltat. Ezt a motortípust főleg hibrid hajtás esetén célszerű alkalmazni, ahol kis fordulatszámoknál villanymotor szolgáltatja a megfelelő nyomatékot. Ilyen motorokat találhatunk a Subaru B5-RPH [4] és a Mazda MILLENIA [5] járművekben. Az ilyen Miller-ciklusú motoroknál nem jelentkezik a szigorúan vett Miller-ciklus teljes hatásfoknövelő előnye, mivel a kompresszióviszony ugyanakkora, mint egy hagyományos motornál, csak a dugattyúsűrítés szerepét a sűrítő ütem első kb. harmadában a feltöltő kompresszor veszi át. Hatásfok-növekedés tehát azért jelentkezik, mert a távozó égéstermékek maradék energiája végzi a sűrítési munka egy részét. Viszont a teljesítmény/lökettérfogat arányt fő szempontként kezelő szemlélet számára kedvező az, hogy a lökkettérfogatot nem kellett növeli, mivel teljes hengertöltést alkalmaz. Kisebb fordulatszámok mellett is megfelelő nyomást szolgáltat a kényszerhajtású feltöltő [6]. Ezt a berendezést a vízszivattyúhoz hasonlóan áttétellel a motor hajtja meg, ezért a fentiekben leírt hatásfok-növekedés egy része nem valósul meg, a füstgázokban rejlő maradék energiatartalom nem hasznosul a turbófeltöltőben.

Külső hivatkozások

[szerkesztés]
{{bottomLinkPreText}} {{bottomLinkText}}
Miller-ciklus
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?