For faster navigation, this Iframe is preloading the Wikiwand page for Hesse-mátrix.

Hesse-mátrix

Egy n-változós függvény Hesse-mátrixa

A matematikában, közelebbről a matematikai analízisben Hesse-féle mátrixnak (ejtsd: hessze) egy többváltozós valós függvény másodrendű parciális deriváltjaiból alkotott négyzetes mátrixát nevezzük.

Legyen

n-változós valós függvény. Ha mindegyik másodrendű parciális deriváltja létezik az f értelmezés tartományának egy x belső pontjában, akkor a Hesse-mátrix mátrixelemei a

számok, ahol x = (x1, x2, …, xn), i, j tetszőleges számok 1-től n-ig, ∂2ij pedig a másodrendű parciális deriválás jele.[1]

A Hesse-féle mátrix determinánsa a Hesse-determináns. A Hesse-determináns elnevezést először James Joseph Sylvester használta, Ludwig Otto Hesse tiszteletére, aki először vezette be és „függvénydeterminánsnak” nevezte.[2]

Hesse-mátrix szimmetrikussága

[szerkesztés]

A Hesse-mátrix főátlóján kívüli elemei a vegyes másodrendű parciális deriváltak. Young tétele értelmében ha az f függvény az u pont egy környezetében mindenütt kétszer parciálisan differenciálható és az u pontban a második deriváltak folytonosak, akkor a parciális deriválás nem függ a deriválás sorrendjétől, azaz a vegyes deriváltak egyenlők. Ez pontosan azt jelenti, hogy a Hesse-mátrix szimmetrikus. Például kétváltozós f függvénynél (u-ban f kétszer folytonosan differenciálható)

.

A Hesse-mátrix mint a deriválttenzor mátrixa

[szerkesztés]

Ha az f függvény az U halmazon értelmezett n-változós valós függvény és az U halmazon létezik az f gradiense, és a grad(f) : U Rn leképezés totálisan differenciálható az uU pontban, akkor a gradiensfüggvény differenciáljának mátrixa a sztenderd bázisra vonatkozólag éppen a Hesse-mátrix:

A d (grad f)(u) tenzor tekinthető úgy, mint az f másodrendű differenciálja az u-ban és teljesül rá, hogy minden xU-ra :

ahol ε folytonos u-ban és ott eltűnik.

Stacionárius pont és szélsőérték létezése

[szerkesztés]

Ha a többváltozós valós f kétszer folytonosan differenciálható, és , akkor értelmezési tartományának u pontját stacionárius pontnak nevezzük. Ha a Hesse-determináns u-ban nulla, akkor ez degenerált kritikus pont.

A Hesse-mátrix segítségével megfogalmazható a többváltozós valós értékű függvények másodikderivált-próbája. Tegyük fel, hogy az u pontban az f-nek stacionárius pontja és legyen

a Hf(u)-hoz asszociált kvadratikus leképezés.

Ha a Qfu(v) kifejezés pozitív minden nemnulla v vektorra, azaz ha Qfu pozitív definit, akkor f-nek u-ban lokális minimuma van. Ez a tulajdonság Sylvester tétele alapján azt jelenti, hogy Hf(u) mátrixának bal felső kvadratikus aldeterminánsai csupa pozitív értékeket felvevő sorozatot alkotnak:

Ha a Qfu(v) kifejezés negatív minden nemnulla v vektorra, azaz ha Qfu negatív definit, akkor f-nek u-ban lokális maximuma van. Ekkor az aldeterminánsok előjelváltóak:

Indefinit esetben vagyis amikor Q felvesz pozitív és negatív értékeket is, a próba állítása szerint biztosan nincs szélsőérték. Szemidefinit esetben, amikor van olyan nemnulla v, amire Qfu(v)=0, a próba nem jár sikerrel.[3]

Kétváltozós függvény szélsőértékei

[szerkesztés]

Speciálisan kétváltozós függvények esetén a próba konkrétan a következők ellenőrzését jelenti:

  1. ha det Hf(u) > 0 és ∂11f(u) > 0, akkor u-ban lokális minimum van,
  2. ha det Hf(u) > 0 és ∂11f(u) < 0, akkor u-ban lokális maximum van,
  3. ha det Hf(u) < 0, akkor u-ban nincs lokális szélsőérték (valamilyen típusú nyeregpontról beszélünk)
  4. ha det Hf(u) = 0, akkor a próba nem járt sikerrel.[4]

Megjegyzés. Ha a Hesse-mátrix elemei

akkor a Hesse-determinánsa D = AC – B2 és így olyan eset nincs, hogy ∂11f(u) = 0 lenne, miközben D > 0.

Példák

[szerkesztés]
Az f(x,y) = x2 + xy + y2 leképezés szélsőértékének keresése esetén célravezető a Hesse-féle determináns vizsgálata.

Definit eset

[szerkesztés]

Legyen

Ekkor grad f = ( 2x + y , 2y + x ), vagyis az elsőderivált próba szerint a

2x + y = 0
2y + x = 0

egyenletrendszer megoldásai közül kerülhetnek ki a szélsőértékek. A megoldás: (x, y) = (0, 0).

A második parciális deriváltakat kiszámítva, a Hesse-mátrix minden pontban

azaz det Hf = 4 - 1 = 3 > 0 és ∂11f = 2 > 0 miatt (0, 0) szélsőértékhely és minimumpont.

Indefinit eset

[szerkesztés]
Az f(x,y) = x2 + xy - y2 leképezés szélsőértékének keresése esetén célravezet a Hesse-féle determináns vizsgálata.

Legyen

Ekkor grad f = ( 2x + y , -2y + x ), melynek zérushelye a (0, 0) pont.

A Hesse-mátrix minden pontban

innen det Hf = -4 – 1 = -5 < 0, így a próba megint sikeres, éspedig állíthatjuk, hogy (0, 0) biztosan nem szélsőértékhely. Ebben a pontban a függvények úgynevezett nemdegenerált nyeregpontja van. Egy stacionárius pont nem degenerált, ha abban a pontban a Hesse-féle determináns nem nulla értékű.

Szemidefinit eset

[szerkesztés]
Az f(x,y) = x2 + 2xy + y2 leképezés esetén a Hesse-féle determináns vizsgálata nem vezet célra

Legyen

Ekkor grad f = ( 2x + 2y , 2y + 2x ), így a gradiens zérushelye minden olyan (x, y) pont, amire x = - y. Ezekben a pontokban a Hesse-mátrix:

azaz det Hf = 4 – 4 = 0, azaz a próba nem járt sikerrel. De tudjuk, hogy

ami pontosan akkor minimális, ha x + y = 0, és ezeken a helyeken valóban szélsőértéke van, mert itt a függvény a lehető legkisebb, azaz 0 értéket veszi föl.

Implicit módon megadott görbe szinguláris pontjai

[szerkesztés]

Azt mondjuk, hogy az

egyenlettel megadott görbének szinguláris pontja az (,) pont, ha ebben a pontban az F függvénynek nincs intervallumon értelmezett differenciálható implicit függvénye egyik változóra vonatkozólag sem (azaz egyik változó sem fejezhető ki lokálisan a másikkal). Szinguláris pont szükséges feltétele az

egyenletek egyidejű fennállása.

Ha F kétszer folytonosan differenciálható függvény és az origóra a fenti egyenlőségek teljesülnek, akkor az F függvény (0, 0)-beli Hesse-determinánsa vizsgálatával a görbe néhány jellegzetes vonására következtethetünk.[5] Az F-et másodrenden közelítő kvadratikus leképezés számára a D = AC - B2 Hesse-determináns ellentettje egyfajta diszkriminánsként működik. Három eset lehet. D < 0 esetén a kvadratikus leképezéshez nincs olyan irány, amely mentén az mindenhol nulla lenne. D = 0 esetén egy ilyen irány van, D > 0 esetén két különböző ilyen irány van.

  1. Ha det HF(0, 0) > 0, akkor (0, 0) izolált pontja a görbének (pl.: (x2 + y2)(1 – y) = 0 az origóban). Ez azzal indokolható, hogy ekkor az F leképezésnek (0, 0)-ban szigorú lokális szélsőértéke van, így annak egy környezetében az F függvény az (0, 0)-t kivéve sehol sem nulla. Így az (0, 0)-beli implicit függvény egyedül az egyelemű {x0} halmazon értelmezett y (x0) = y0 függvény.
  2. Ha det HF(0, 0) < 0, akkor (0, 0)-ban a görbe átmetsző (pl.: az x3 + y3 – 3xy = 0 Descartes-féle levélnél). Hiszen ekkor a (0, 0) pont nyeregpont, így a felület biztosan legalább két különböző irányban átmetszi az [xy] síkot.
  3. Ha det HF(0, 0) = 0, akkor a görbe számos módon viselkedhet; az egyik például, hogy saját magával érintkezik első rendben, azaz két ágának ugyanaz az érintőegyenese (pl.: x2y4 = 0). De átmetsző is lehet, például az x2y2 = 0 egyenletnél.

A feltételes szélsőérték-probléma Hesse-mátrixa

[szerkesztés]

Ha az

függvény

korlátozásnak alávetett megszorításának szélsőértékeit keressük, akkor ezt az

függvény szabad szélsőértékeinél kell keresnünk. Ha elégségességi vizsgálatokat is szándékozunk végezni, akkor felírhatjuk az f + λg feladat Hesse-mátrixát, a λ új változóval kiegészítve:

Világos, hogy ez a mátrix soha sem lesz definit, mert a (0, 0, …, 1) nemnulla vektoron a z z'Hz leképezés a 0-t veszi föl. Ám ha már az n × n-es bal felső blokk definit, akkor már kijelenthetjük, hogy szigorú, lokális szélsőértékről beszélhetünk (pozitív definit esetben minimumról, negatív esetben maximumról).

Ez amiatt van, hogy a z'Hz kvadratikus leképezést a feltételi egyenletnek megfelelő alakban kell felírni, azaz ha (, , …, ) tetszőleges vektorok, akkor a

kvadratikus alakot a feltételi egyenlet differenciálásával adódó

egyenletben szereplő valamely alkalmas változót kell kifejezni a többi függvényében és az így adódó z'Hz kvadratikus leképezést kell tovább vizsgálni.

Jegyzetek

[szerkesztés]
  1. Serge Lang, Undergraduate calculus p 486, Springer 2nd ed 1997
  2. Jeff Miller & all Earliest Known Uses of Some of the Words of Mathematics
  3. Kristóf János, Az analízis elemei. II. ELTE jegyzet. 175. o. pdf Archiválva 2004. október 13-i dátummal a Wayback Machine-ben
  4. Balázs Márton – Kolumbán József,Matematikai analízis[halott link] 205. o., Ed. Dacia, Cluj-Napoca 1979.
  5. A. F. Bermant, Matematikai analízis II.[halott link], Tankönyvkiadó, Bp. 1951., 93. o.

Külső hivatkozások

[szerkesztés]
{{bottomLinkPreText}} {{bottomLinkText}}
Hesse-mátrix
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?