For faster navigation, this Iframe is preloading the Wikiwand page for משפטי סילו.

משפטי סילו

משפטי סילו הם משפטים בתורת החבורות, העוסקים בתת-חבורות-p מקסימליות של חבורה סופית. חבורות שסדרן הוא חזקה של ראשוני נקראות חבורות p, וכולן נילפוטנטיות. משפטי סילו מאפשרים לחקור חבורות סופיות באמצעות תת-חבורות כאלה והפעולה שלה עליהן, ומכאן המעמד היסודי שלהן בתורת החבורות.

את המשפטים הוכיח המתמטיקאי הנורווגי לודוויג סילו בשנת 1872, והם מכלילים את משפט קושי שנוגע למקרה .

במובן מסוים, משפטי סילו הפוכים למשפט לגראנז'. לפי משפט לגראנז', הסדר של תת-חבורה של חייב לחלק את הסדר של . משפטי סילו מראים שאם נתון מחלק של הסדר של שהוא חזקת ראשוני, אז אפשר למצוא תת-חבורה מסדר . משפטי סילו קובעים גם שכל תת-החבורות שסדרן הוא חזקת- מקסימלית, צמודות זו לזו.

אם הוא מספר ראשוני המחלק את הסדר של החבורה הסופית , אז קיימת חזקה מקסימלית של המחלקת את הסדר. כלומר מחלק את סדר החבורה, אבל אינו מחלק. לתת-חבורה של שסדרה שווה ל- קוראים חבורת p-סילו של . הגדרה שימושית אחרת לאותו מושג: חבורת -סילו היא תת-חבורה של שהיא חבורת-p, בעלת אינדקס זר ל-.

לדוגמה, אם אז תת-חבורה מסדר היא חבורת -סילו של , ותת-חבורה מסדר היא חבורת -סילו של .

ניסוח המשפטים

[עריכת קוד מקור | עריכה]

נניח ש- חבורה סופית וש- היא חזקה מקסימלית של ראשוני המחלקת את הסדר של . נסמן ב- את מספרן של חבורות p-סילו השונות של . נציין מיד שאם חבורת סילו, אז תת-החבורות הצמודות לה גם הן חבורות -סילו.

משפט סילו הראשון

[עריכת קוד מקור | עריכה]

לכל חבורה קיימת חבורת -סילו. (דהיינו ).

הכללה של משפט זה קובעת שלכל חזקת המחלקת את הסדר של , לאו דווקא החזקה המקסימלית, קיימת תת-חבורה בגודל זה.

משפט סילו השני

[עריכת קוד מקור | עריכה]

כל חבורות -סילו של צמודות זו לזו. יתרה מזו, כל תת-חבורה של , שהיא חבורת , מוכלת באיזושהי חבורת -סילו של .

מסקנה

חבורת -סילו היא יחידה (כלומר ) אם ורק אם היא תת חבורה נורמלית של .

משפט סילו השלישי

[עריכת קוד מקור | עריכה]

מספרן של חבורות -סילו של שקול לאחת מודולו . כלומר .

מסקנה

מחלק את הסדר של . אם נסמן (כאשר n מקסימלי), נובע מכך ש- מחלק את , משום שלפי משפט סילו השלישי זר ל־.

הוכחה: מספר תת-החבורות הצמודות לתת-חבורה של שווה לאינדקס של המנרמל של ב-, שהוא תת-חבורה המכילה את . אבל המנרמל מכיל את , לכן האינדקס שלו מחלק את זה של , וממילא הוא זר ל-.

דוגמאות ושימושים

[עריכת קוד מקור | עריכה]
  • נראה שלכל חבורה מסדר מוכרחה להיות תת-חבורה נורמלית. , ולכן יש לחבורה תת-חבורות מסדר , ו-. מספרן של החבורות מסדר שקול ל- מודולו ומחלק את - ולכן הוא או . באופן דומה מספרן של החבורות מסדר הוא או , ושל אלו מסדר הוא או . אם אחת מחבורות אלו היא יחידה מסדרה, אז היא נורמלית. נניח שאין כזו, אז יש חבורות מסדר , שכולן ציקליות כמובן. חבורות מסדר ראשוני מוכרחות להיחתך זו עם זו באופן טריוויאלי, ולכן יש בהן איברים מסדר . באופן דומה יש איברים מסדר ו- מסדר . ביחד יותר מ-, וזה בלתי אפשרי.
  • משפט הלדר הכללה של הדוגמה הקודמת.

למשפטי סילו יש הוכחות רבות, למשל באינדוקציה על הסדר של . ההוכחה שנציג כאן מבוססת על הפעולה של על קבוצות מסוימות, והיא מיוחסת לנתן ג'ייקובסון.

הוכחת המשפט הראשון. נסמן ב- את אוסף כל תת-הקבוצות בגודל של . מכיוון ש-, קל לחשב ש- אינו מחלק את העוצמה של . החבורה פועלת על על ידי כפל משמאל: .

מכיוון שהגודל של אינו מתחלק ב-, מוכרח להיות מסלול תחת הפעולה של , שגודלו אינו מתחלק ב-. תהי נקודה באותו מסלול; נבחר , אז גם היא נקודה באותו המסלול, והיא מכילה את איבר היחידה של . לכן אפשר להניח ש- . מצד אחד, המייצב של מוכל ב- (שהרי ), ולכן גודלו לכל היותר. מצד שני, האינדקס של המייצב מחלק את , אבל הוא שווה לגודל המסלול, ולכן זר ל- ומחלק את . יחד נובע מכאן שגודל המייצב שווה בדיוק ל-, ואם כך הוא שווה ל-; אבל אז היא חבורת -סילו.

כעת נסמן ב- את אוסף חבורות p-סילו של ; המשפט הראשון טוען ש- אינה ריקה. החבורה פועלת על לפי הצמדה.

טענה. אם תת-קבוצה של סגורה תחת הפעולה, אז גודלה שקול ל- מודולו .

הוכחה. ברור שכל חבורת -סילו היא תת-חבורת- מקסימלית. לכן, אם שתיהן חבורות p-סילו, אז אינה תת-חבורה של (אחרת סדרה היה שווה ל- , וזו חזקת- גדולה מדי). מכאן יוצא ש- אינה יכולה לנרמל את (אחרת היא תת-חבורה).

כעת תהי חבורת -סילו; בתור תת-חבורה של , גם פועלת על בהצמדה, ולכן היא פועלת גם על . גודלי המסלולים תחת הפעולה הזו מחלקים כמובן את הגודל של , ולכן הם כולם חזקות של . יש שני סוגים של מסלולים: אלה שגודלם , ואלה שגודלם מתחלק ב-. אם היא נקודה יחידה במסלול, אז מנרמלת את , וזה בלתי אפשרי - אלא אם . כלומר, יש רק מסלול אחד שגודלו , והוא המסלול המכיל את בלבד. גודלי שאר המסלולים מתחלקים ב-, ולכן סכום הגדלים של כל המסלולים (שהוא כמובן הגודל של ) שקול ל- מודולו .

הוכחת המשפט השלישי. מספיק לבחור בטענה.

הוכחת המשפט השני. לפי הטענה, הגודל של כל מסלול שקול ל- מודולו . אבל כך גם עבור האיחוד של שני מסלולים, אילו היו כאלה, וזה כמובן בלתי אפשרי. מכאן שיש בפעולה רק מסלול אחד, ובמלים אחרות זוהי פעולה טרנזיטיבית.

קישורים חיצוניים

[עריכת קוד מקור | עריכה]
{{bottomLinkPreText}} {{bottomLinkText}}
משפטי סילו
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?