For faster navigation, this Iframe is preloading the Wikiwand page for אלגברת האוקטוניונים של קיילי.

אלגברת האוקטוניונים של קיילי

ערך מחפש מקורות רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.
ערך מחפש מקורות רובו של ערך זה אינו כולל מקורות או הערות שוליים, וככל הנראה, הקיימים אינם מספקים.אנא עזרו לשפר את אמינות הערך באמצעות הבאת מקורות לדברים ושילובם בגוף הערך בצורת קישורים חיצוניים והערות שוליים.אם אתם סבורים כי ניתן להסיר את התבנית, ניתן לציין זאת בדף השיחה.

במתמטיקה, אלגברת האוקטוניונים היא אלגברת החילוק האלטרנטיבית היחידה מממד 8 מעל שדה המספרים הממשיים. אלגברה זו, שאינה אסוציאטיבית, היא אלגברת האוקטוניונים הידועה ביותר. מקובל לסמן את המבנה באות .

אלגברת האוקטוניונים קשורה למספר מבנים מתמטיים יוצאי דופן, ובהם חבורות לי מטיפוס . בנוסף, לאוקטוניונים יש שימושים בתחומים כגון תורת המיתרים ותורת היחסות הפרטית.

את האוקטוניונים גילה בשנת 1843 ג'ון ט. גרייבס, חבר של ויליאם המילטון, לאחר שהלה בנה את אלגברת הקווטרניונים של המילטון; גרייבס קרא להם אוקטבות, ושם זה עדיין נמצא בשימוש.

ארתור קיילי גילה את האוקטוניונים באופן בלתי תלוי, ופרסם אותם לראשונה בשנת 1845. האוקטוניונים מוכרים לעיתים כמספרי קיילי.

האוקטוניונים הם, כאמור, אלגברה מממד 8 מעל שדה המספרים הממשיים. כל אוקטוניון הוא צירוף ליניארי של אוקטוניוני היחידה , כלומר, כל אוקטוניון אפשר לכתוב בצורה , כאשר הם מקדמים ממשיים.

חיבור אוקטוניונים מתבצע על ידי חיבור המקדמים. הכפל נקבע לפי לוח הכפל של אוקטוניוני היחידה (הגורמים משמאל הוא זה המוצג בראש השורה):

1
−1 - - -
−1 - -
- −1 -
- - −1
- - −1 -
- - −1 -
- −1

כך אפשר לראות שאלגברת האוקטוניונים אינה קומוטטיבית () ואינה אסוציאטיבית (). בחירת הבסיס אינה קנונית - בסיסים סטנדרטיים אחרים נבדלים מן הבסיס שהוצג לעיל בסדר האיברים ובסימן המכפלות.

בניית קיילי-דיקסון

[עריכת קוד מקור | עריכה]

אפשר לבנות את האוקטוניונים באופן שיטתי, מאלגברת הקווטרניונים של המילטון, באמצעות בניית קיילי-דיקסון. בבניה זו, כפי שמספרים מרוכבים הם זוגות של מספרים ממשיים וקווטרניונים הם זוגות של מספרים מרוכבים, כל אוקטוניון הוא זוגות של קווטרניונים. החיבור, כתמיד, הוא לפי רכיבים. כפל של שני זוגות קווטרניונים ו- מתבצע כך:

כאשר מסמל את הצמוד של הקווטרניון . הגדרה זו שקולה לקודמת, כאשר אוקטוניוני היחידה הם:
.

מישור פאנו

[עריכת קוד מקור | עריכה]
עזר זיכרון פשוט לזכירת המכפלות של אוקטוניוני היחידה

עזר זיכרון נוח שמאפשר לזכור את המכפלות של אוקטוניוני היחידה נתון בדיאגרמה שלהלן. דיאגרמה זו בעלת 7 נקודות ו-7 קווים (המעגל בין i, j ו-ij נחשב כקו) נקראת מישור פאנו. לקווים יש כיוון בדיאגרמה זאת. שבע הנקודות מתאימות לשבעת גורמי הבסיס של . כל זוג נקודות נמצא על קו יחיד, ועל כל קו יש בדיוק שלוש נקודות.

ניקח בתור שלישיית נקודות שנמצאות על קו ומסודרות לפי כיווני החצים. הכפל מתבצע על ידי
וגם
ביחד עם תמורה מחזורית. כלל זה ביחד עם:

  • 1 הוא היחידה הכפלית,
  • לכל נקודה בדיאגרמה

מגדירים לגמרי את מבנה הכפל של האוקטוניונים. כל קו יוצר תת-אלגברה של שהיא איזומורפית לאלגברת הקווטרניונים. למעשה, כל תת-אלגברה של היא אחת מאלגברות ההרכב , , או .

הצמדה, נורמה והיפוך

[עריכת קוד מקור | עריכה]

הצמוד של אוקטוניון

נתון על ידי:

ההצמדה היא אינוולוציה: , ו- .

החלק הממשי של מחושב על ידי , והחלק המדומה (השבעה-ממדי) - על ידי .

הנורמה באלגברת האוקטוניונים מוגדרת לפי , וזהו תמיד מספר ממשי לא-שלילי: . (לפעמים מעוניינים בשורש של הנורמה האלגברית, שהוא האורך של הווקטור במרחב האוקלידי השמונה-ממדי).

למרות שהאלגברה אינה אסוציאטיבית, הנורמה היא פונקציה כפלית, וכך נעשית אלגברת האוקטוניונים אלגברת הרכב. עובדה זו אחראית במידה רבה לנוסחת הכפל הפולינומית עבור סכומים של שמונה ריבועים (ראו משפט הורוויץ על תבניות ריבועיות; נוסחת כפל רציונלית נובעת מכך שסכום הריבועים הוא תבנית פיסטר). הנורמה גם מאפשרת לחשב את ההפכי לכל איבר: ההופכי של נתון על ידי: .

קישורים חיצוניים

[עריכת קוד מקור | עריכה]
{{bottomLinkPreText}} {{bottomLinkText}}
אלגברת האוקטוניונים של קיילי
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?