For faster navigation, this Iframe is preloading the Wikiwand page for Nitrificación.

Nitrificación

Ciclo do nitróxeno.

A nitrificación é a oxidación biolóxica do amoníaco con oxíxeno, en cuxo proceso completo primeiro o amoníaco se converte en amonio, e despois este en nitrito, e finalmente prodúcese a oxidación deste nitrito a nitrato. A transformación do amoníaco en nitrito é xeralmente o paso limitante da nitrificación. A nitrificación é un importante paso no ciclo do nitróxeno no solo. A nitrificación é un proceso aeróbico realizado por pequenos grupos de arqueas e bacterias autótrofas. Este proceso foi descuberto polo microbiólogo ruso Sergei Winogradsky.

Microbioloxía e ecoloxía

[editar | editar a fonte]

A oxidación do amoníaco a nitrito realízana dous grupos de organismos, as bacterias oxidantes do amoníaco (BOA) e as arqueas oxidantes do amoníaco (AOA [1]).[2] As BOA poden encontrarse nos grupos das Betaproteobacteria e as Gammaproteobacteria.[3] Actualmente, están illadas e descritas dúas AOA, que son Nitrosopumilus maritimus e Nitrososphaera viennensis.[4] Nos solos as BOA máis estudadas pertencen aos xéneros Nitrosomonas e Nitrosococcus. Aínda que nos solos a oxidación do amoníaco realízana tanto as BOA coma as AOA, son as AOA as que dominan tanto nos solos coma nos ambientes mariños,[1][5][6] o que indica que as Thaumarchaeota poden ser os maiores contribuíntes á oxidación do amoníaco neses ambientes.[1]

O segundo paso do proceso (a oxidación de nitrito a nitrato) realízano maiormente as bacterias do xénero Nitrobacter e Nitrospira. Ambos os pasos mencionados producen enerxía acoplada á síntese de ATP. Os organismos nitrificantes son quimioautótrofos, e utilizan o dióxido de carbono como a súa fonte de carbono para crecer. Algunhas BOA posúen o encima urease, que cataliza a conversión da molécula de urea en dúas moléculas de amoníaco e unha de dióxido de carbono. A especie Nitrosomonas europaea, que tamén é unha BOA que mora nos solos, asmila o dióxido de carbono liberado por esa reacción para producir biomasa polo ciclo de Calvin, e obtén enerxía ao oxidar amoníaco (o outro produto da urease) a nitrito. Esta característica pode explicar que se favoreza o cecemento das BOA en presenza de urea en ambientes ácidos.[7]

Na maioría dos ambientes, os microorganismos presentes completan ambos os pasos do proceso, rendendo nitrato como produto final. Porén, é posible deseñar sistemas nos cales se forme nitrito (proceso de Sharon).

A nitrificación é importante en agricultura, na que a miúdo se aplican fertilizantes en forma de amoníaco. A conversión deste amoníaco en nitrato incrementa a lixiviación do nitróxeno porque o nitrato é máis hidrosoluble que o amoníaco.

A nitrificación tamén xoga un importante papel na eliminación do nitróxeno das augas residuais urbanas. A eliminación convencional deste nitróxeno faise por nitrificación seguida de desnitrificación. O custo do proceso depende principalmente da aireación (introdución de oxíxeno no reactor) e da adición dunha fonte de carbono externa (por exemplo, metanol) para a desnitrificación.

A nitrificación pode tamén darse na auga potable. Nos sistemas de distribución de auga nos que se usan cloraminas como desinfectantes secundarios, a presenza de amoníaco libre pode actuar como substrato para os microorganismos oxidantes do amoníaco. As reaccións asociadas poden orixinar a diminución do desinfectante residual no sistema.[8] A adición de ión clorito a augas tratadas con cloramina controla a nitrificación.[9][10]

Xunto coa amonificación (paso de amoníaco a amonio), a nitrificación constitúe un proceso de mineralización que descompón a materia orgánica e libera compostos de nitróxeno dispoñibles para as plantas. Estas reaccións realimentan o ciclo do nitróxeno.

A nitrificación é un proceso de oxidación de compostos nitroxenados no que se perden electróns do átomo de nitróxeno que pasan a átomos de oxíxeno. As reaccións son:

  1. 2 NH4+ + 3 O2 → 2 NO2- + 2 H2O + 4 H+ (Nitrosomonas)
  2. 2 NO2- + 1 O2 → 2 NO3- (Nitrobacter, Nitrospina)
  3. NH3 + O2 → NO2 + 3H+ + 2e
  4. NO2 + H2O → NO3 + 2H+ + 2e

Nitrificación nos ecosistemas mariños

[editar | editar a fonte]

No medio mariño o nitóxeno é con frecuencia un nutriente limitante, polo que o ciclo do nitróxeno nos océanos é de especial intrese.[11][12] A etapa da nitrificación dentro deste ciclo, crea nitrato, que é a forma de nitróxeno principal responsable da "nova" produción. Ademais, a medida que o océano se enriquede de dióxido de carbono de orixe antropoxénica, o decrecemento resultante do pH podería facer que diminuísen as taxas de nitrificación. A nitrificación potencialmente podería ser un "pescozo de botella" no ciclo do nitróxeno.[13]

Distintos microbios son responsables dos dous pasos da nitrificación (amoníaco → nitrito e nitrito → nitrato) nos ambientes mariños. Coñécense varos grupos de BOA (bacterias oxidantes do amoníaco) nos ecosistemas mariños, como Nitrosomonas, Nitrospira, e Nitrosococcus. Todos conteñen o xene funcional da amoníaco monooxixenase (AMO), o cal é responsable da oxidación do amoníaco.[1][12] Estudos máis recentes de metaxenómica revelaron que algunhas Thaumarchaeota (antes clasificadas como Crenarchaeota) posúen AMO. As Thaumarchaeota son abundantes no océano e algunhas especies teñen unhas 200 veces maior afinidade polo amoníaco que as BOA, o que levou aos científicos a poñer en dúbida a tradicional crenza de que as BOA son as principais responsables da nitrificación no océano.[14] Ademais, aínda que clasicamente se pensa que a nitrificación está separada veticalmente da produción primaria porque a oxidación do nitróxeno polas bacterias é inhibida pola luz, a nitrificación feita polas AOA (arqueas oxidantes do amoníaco) non parece ser inhibida pola luz, o que significa que a nitrificación está ocorrendo ao longo de toda a columna de auga, o que tamén pon en cuestión as definicións habituais de produción "nova" e "reciclada".[14]

No segundo paso da nitrificación, o nitrito é oxidado a nitrato. Nos océanos, este paso non se comprende tan ben coma o primeiro, pero sábese que as bacterias Nitrospina e Nitrobacter levan a cabo esta etapa no océano.[14]

Condicións do solo que controlan as taxas de nitrificación

[editar | editar a fonte]
  • Dispoñibilidade do substrato (presenza de NH4+).
  • Aireación (dispoñibilidade de O2).
  • Solos ben drenados cunha humidade do solo do 60%.
  • pH case neutro.
  • Temperatura (mellor entre 20-30 °C). A nitrificación é estacional e está afectada polas prácticas de uso do solo.
  1. 1,0 1,1 1,2 1,3 Hatzenpichler R. (2012) Diversity, physiology and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78: 7501-7510
  2. Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7: 1985–1995
  3. Purkhold, U., Pommerening-Roser, A., Juretschko, S.,Schmid, M.C., Koops, H.-P., and Wagner, M. (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66: 5368–5382
  4. Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., Stahl, D. A. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461: 976-981.
  5. Wuchter, C., Abbas, B., Coolen, M.J.L., Herfort, L., van Bleijswijk, J., Timmers, P., et al. (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103: 12317–12322.
  6. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, C. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:7014 pages 806-9.
  7. Marsh, K. L., G. K. Sims, and R. L. Mulvaney. 2005. Availability of urea to autotrophic ammonia-oxidizing bacteria as related to the fate of 14C- and 15N-labeled urea added to soil. Biol. Fert. Soil. 42:137-145.
  8. Zhang, Y, Love, N, & Edwards, M (2009), "Nitrification in Drinking Water Systems", Critical Reviews in Environmental Science and Technology, 39(3):153-208, doi 10.1080/10643380701631739.
  9. McGuire, M.J., Lieu, N.I. and Pearthree, M.S. (1999). “Using Chlorite Ion to Control Nitrification,” Journal American Water Works Association. 91:10 (October) 52-61.
  10. McGuire, M.J., Wu, X., Blute, N.K., Askenaizer, D., and Qin, G. (2009). “Prevention of nitrification using chlorite ion: Results of a demonstration project in Glendale, Calif.,” Journal American Water Works Association. 101:10 (October) 47-59.
  11. Zehr, J. P. and R. M. Kudela. 2011. Nitrogen cycle of the open ocean: from genes to ecosystems. Annu. Rev. Mar Sci. 3:197-225.
  12. 12,0 12,1 Nitrification and Denitrification: Probing the Nitrogen Cycle in Aquatic Environments B. B. Ward Microbial Ecology Vol. 32, No. 3 (1996), pp. 247-261
  13. Hutchins, D. A., Mulholland, M. R., Fu, F. (2009). Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography. Vol. 22, pp. 128-145.
  14. 14,0 14,1 14,2 Zehr, J. P. and Kudela R. M.. 2011. Nitrogen cycle of the open ocean: from genes to ecosystems. Annu. Rev. Mar Sci. 3:197-225. [1] Arquivado 15 de xullo de 2014 en Wayback Machine.

Véxase tamén

[editar | editar a fonte]

Outros artigos

[editar | editar a fonte]

Ligazóns externas

[editar | editar a fonte]
{{bottomLinkPreText}} {{bottomLinkText}}
Nitrificación
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?