For faster navigation, this Iframe is preloading the Wikiwand page for نابرابری کوشی–شوارتز.

نابرابری کوشی–شوارتز

یکی از نامساوی‌های مهم و پرکاربرد در ریاضیات، نامساوی کوشی-شوارتس (به انگلیسی: Cauchy-Schwarz inequality) است که به نام‌های «نامساوی کوشی»، «نامساوی شوارتس»، «نامساوی کوشی-بونیاکوفسکی-شوارتس» و «نامساوی لاگرانژ»[۱] نیز مشهور است. علت این نامگذاری‌ها، شیوه‌های گوناگون گسترش یافتن این نامساوی به فضاهای مختلف است که در زمینه‌های مختلفی مانند جبر خطی، آنالیز ریاضی و نظریه احتمالات مطرح می‌شود. نابرابری کوشی-شوارتز به عنوان یکی از مهم‌ترین نابرابری‌های ریاضیات شناخته می‌شود[۲] و به نام آگوستین لویی کوشی و هرمن امندوس شوارتز خوانده می‌شود.

بیان نابرابری

[ویرایش]

نابرابری کوشی-شوارتز بیان می‌کند که برای هر دو بردار دلخواه x و y در فضای ضرب داخلی داریم:

که در آن ضرب داخلی است. هم‌چنین با گرفتن ریشه دوم طرفین و با توجه به متریک القاء شده توسط این عملگر ضرب داخلی، نامساوی به شکل زیر نوشته می‌شود:

حالت تساوی رخ می‌دهد اگر و فقط اگر x و y وابستهٔ خطی باشند.

حالات خاص

[ویرایش]

لم تیتو

[ویرایش]

برای لم تیتو[۳] ( همچنین بنام نامساوی برگستورم، فرم انگل یا لم T2 نیز شناخته می‌شود) داریم، برای اعداد حقیقی و مثبت داریم:

برای اثبات کافیست تا ضرب داخلی روی فضای برداری را در نظر بگیرید و با جایگذاری و حکم نتیجه می‌شود.

نامساوی کوشی-شوارتز در دایره واحد صفحه اقلیدسی.

صفحه اقلیدسی (R2)

[ویرایش]

فضای برداری حقیقی ، نشان دهنده صفحه دو بعدی است که در آن ضرب داخلی همان حاصل ضرب نقطه‌ای است. اگر و آنگاه نابرابری کوشی-شوارتز می شود:

که در آن θ، زاویه بین u و v است.

حالت بالا شاید ساده‌ترین شکل برای درک نابرابری باشد، زیرا مجذور کسینوس حداکثر می‌تواند ۱ باشد، که زمانی اتفاق می‌افتد که بردارها در یک جهت یا مخالف هم باشند. همچنین می توان آن را بر حسب مختصات برداری تنظیم کرد:

که در آن تساوی برقرار است اگر و فقط اگر بردار در جهت یکسان یا مخالف باشد یا اگر یکی از آنها بردار صفر است.

فضای n-بعدی مختلط (Cn)

[ویرایش]

اگر و اعداد مختلط دلخواه باشند، و نماد بار نشان‌دهندهٔ مزدوج مختلط باشد، نابرابری را می‌توان به شکل زیر بازنویسی کرد:

مراجع

[ویرایش]
  1. Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M. (1993). "Classical and New Inequalities in Analysis". doi:10.1007/978-94-017-1043-5. ((cite journal)): Cite journal requires |journal= (help)
  2. The Cauchy–Schwarz Master Class: an Introduction to the Art of Mathematical Inequalities, Ch. 1 by J. Michael Steele.
  3. "Sedrakyan's inequality". Wikipedia (به انگلیسی). 2022-01-15.

منابع

[ویرایش]
  • محمد صال‌مصلحیان و فاطمه عبدالله‌زاده گنابادی، "بازنگاهی به نامساوی کوشی-شوارتس"، فرهنگ و اندیشۀ ریاضی سال ٣۶، شمارۀ ۶١ (پاییز و زمستان ١٣٩۶) صص. ٩٩ تا ١١۵


{{bottomLinkPreText}} {{bottomLinkText}}
نابرابری کوشی–شوارتز
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?