For faster navigation, this Iframe is preloading the Wikiwand page for Estado singlete.

Estado singlete

El término singlete (también llamado singulete) tiene un sentido ligeramente diferente en el campo de la física que en el de la química

En el campo de la física

[editar]

En física teórica, el término singlete usualmente hace referencia a una representación unidimensional. Por ejemplo:

  • Una partícula en la cual el espín ha desaparecido.
  • Dos o más partículas que se encuentran en estados enlazados, de forma tal que la suma total de momentos angulares de ese estado total es cero.

Los estados singletes aparecen con frecuencia en la física atómica como una de las formas en que los espines de dos partículas con espines no nulos pueden combinarse (al restarse véase la ecuación en notación de Dirac de esta sección), la otra es el estado triplete (al sumarse los estados en notación de Dirac).

Por ejemplo un único electrón puede poseer una proyección de espín igual a (+½) o (-½), es decir, su comportamiento puede ser considerado como un estado doblete, esto es, como la representación fundamental del grupo de Lie SU(2). El producto de dos representaciones doblete al combinarse se puede descomponer como la suma de las representaciones (el triplete) y la representación trivial como la resta, véase la ecuación de esta sección (el singlete).

Más prosaicamente, los espines de un par de electrones se pueden combinar para formar un estado de espin total 1 (al sumar: triplete) o un estado de espín 0 (al restar: singlete).

El estado singlete (traducido, singulete en mecánica cuántica) formado a partir de un par de partículas posee muchas propiedades particulares, y desempeña un rol fundamental en la paradoja EPR y en el entrelazamiento cuántico.

En la notación de Dirac el estado de enlazamiento EPR es representado usualmente como:

En el campo de la química

[editar]

En química cuántica, se dice comúnmente que un átomo o molécula se encuentra en "estado de espín electrónico singlete" si todos los espines de todos sus electrones se encuentran apareados. Es decir si la suma total de espines electrónicos es cero.

El término singlete se puede aplicar:

Estas técnicas espectroscópicas se utilizan para deducir y comprender la estructura interna de las especies químicas. Los sistemas que poseen un estado singlete (espín cero) ya sea nuclear o electrónico, no dan respuesta frente a las técnicas de resonancia que se encargan de analizarlas.

Por ejemplo, las moléculas orgánicas que no son radicales tienen un espín electrónico S = 0 y por lo tanto no responden a la RPE.

Del mismo modo, algunos isótopos como el carbono-12 tienen un spin nuclear I = 0 y por lo tanto no responden a la RMN.

Véase también

[editar]
{{bottomLinkPreText}} {{bottomLinkText}}
Estado singlete
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?