For faster navigation, this Iframe is preloading the Wikiwand page for Axioma de regularidad.

Axioma de regularidad

En teoría de conjuntos, el axioma de regularidad o axioma de fundación es un axioma que postula que ciertos conjuntos «patológicos», como por ejemplo un conjunto que se contenga a sí mismo como elemento, no pueden existir. Fue propuesto por Von Neumann y Zermelo entre 1925 y 1930.[1]

Enunciado

La manera en la que se enuncia el axioma de regularidad es asegurando que cada conjunto posee un elemento que es disjunto con él:

Axioma de regularidad

Una manera equivalente de enunciar el axioma de regularidad es afirmando que todos los conjuntos son regulares, es decir, que la relación de pertenencia vista como un orden parcial tiene un elemento mínimo en todos los conjuntos. En particular, esto prohíbe la existencia de una sucesión infinita de conjuntos de la forma x1 x2 x3 ... De este modo, es sencillo entender que el axioma de regularidad prohíbe la existencia de conjuntos «patológicos» —no regulares— como por ejemplo:

  • Un conjunto que sea su único elemento, . Se tendría entonces que x x ...
  • Una pareja de conjuntos y y z tales que y = {z}, z = {y}. Se cumpliría y z y ...

Rango

Una de las consecuencias más importantes del axioma de regularidad es la clasificación de todos los conjuntos por «etapas», construidas a partir del conjunto vacío mediante la reiterada aplicación de la potenciación de conjuntos. Se define para cada ordinal, según sea 0, un ordinal sucesor o un ordinal límite:

Se tiene entonces el siguiente teorema:

Todo conjunto regular está en algún Rα.

Por esto, el axioma de regularidad se denota usualmente como «V = R», es decir, la clase universal (de la totalidad de conjuntos) y la clase R de los conjuntos regulares (la unión de todos los Rα) son idénticas. Puede clasificarse entonces cada conjunto regular en algún Rα:

El rango de un conjunto regular x es el mínimo ordinal α tal que x Rα+1.

Consistencia relativa

El axioma de regularidad (V = R) es totalmente independiente del resto de axiomas de ZF y NBG. La clase R de los conjuntos regulares es un modelo del resto de axiomas de ZF, luego de estos no puede probarse la existencia de un conjunto no regular, y asumir V = R es consistente. De modo similar, puede construirse un modelo del resto de ZF en el que aparezcan conjuntos del tipo , luego es imposible probar la regularidad de todos los conjuntos, y asumir VR también es consistente.

Referencias

  1. Véase Ferreirós, 2007, §2.2 y §2.3.
  • Cohen, Paul J. (1966). Set theory and the continuum hypothesis (en inglés). W.A. Benjamin. OCLC 291078.  En II.5 describe el axioma de regularidad.
  • Ferreirós, José (2007). Labyrinth of Thought (en inglés). Birkhäuser Verlag AG. ISBN 978-3-7643-8349-7. 
{{bottomLinkPreText}} {{bottomLinkText}}
Axioma de regularidad
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?