For faster navigation, this Iframe is preloading the Wikiwand page for Plaintext-aware encryption.

Plaintext-aware encryption

Plaintext-awareness is a notion of security for public-key encryption. A cryptosystem is plaintext-aware if it is difficult for any efficient algorithm to come up with a valid ciphertext without being aware of the corresponding plaintext.

From a lay point of view, this is a strange property. Normally, a ciphertext is computed by encrypting a plaintext. If a ciphertext is created this way, its creator would be aware, in some sense, of the plaintext. However, many cryptosystems are not plaintext-aware. As an example, consider the RSA cryptosystem without padding. In the RSA cryptosystem, plaintexts and ciphertexts are both values modulo N (the modulus). Therefore, RSA is not plaintext aware: one way of generating a ciphertext without knowing the plaintext is to simply choose a random number modulo N.

In fact, plaintext-awareness is a very strong property. Any cryptosystem that is semantically secure and is plaintext-aware is actually secure against a chosen-ciphertext attack, since any adversary that chooses ciphertexts would already know the plaintexts associated with them.

History

[edit]

The concept of plaintext-aware encryption was developed by Mihir Bellare and Phillip Rogaway in their paper on optimal asymmetric encryption,[1] as a method to prove that a cryptosystem is chosen-ciphertext secure.

Further research

[edit]

Limited research on plaintext-aware encryption has been done since Bellare and Rogaway's paper. Although several papers have applied the plaintext-aware technique in proving encryption schemes are chosen-ciphertext secure, only three papers revisit the concept of plaintext-aware encryption itself, both focussed on the definition given by Bellare and Rogaway that inherently require random oracles. Plaintext-aware encryption is known to exist when a public-key infrastructure is assumed. [2] Also, it has been shown that weaker forms of plaintext-awareness exist under the knowledge of exponent assumption, a non-standard assumption about Diffie-Hellman triples. [3] Finally a variant of the Cramer Shoup encryption scheme was shown to be fully plaintext aware in the standard model under the knowledge of exponent assumption. [4]

See also

[edit]

References

[edit]
  1. ^ M. Bellare and P. Rogaway. Optimal Asymmetric Encryption -- How to encrypt with RSA. Extended abstract in Advances in Cryptology – Eurocrypt '94 Proceedings, Lecture Notes in Computer Science Vol. 950, A. De Santis ed, Springer-Verlag, 1995. full version (pdf)
  2. ^ J. Herzog, M. Liskov, and S. Micali. Plaintext Awareness via Key Registration. In Advances in Cryptology – CRYPTO 2003 Proceedings, Lecture Notes in Computer Science Vol. 2729, Springer-Verlag, 2003. (pdf)
  3. ^ M. Bellare and A. Palacio. Towards Plaintext-Aware Public-Key Encryption without Random Oracles. In Advances in Cryptology – ASIACRYPT 2004, Lecture Notes in Computer Science Vol. 3329, Springer-Verlag, 2004. full version (pdf)
  4. ^ A. W. Dent The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the Standard Model. In Advances in Cryptology – EUROCRYPT 2006, Lecture Notes in Computer Science Vol. 4004, Springer-Verlag, 2006. full version (pdf)
{{bottomLinkPreText}} {{bottomLinkText}}
Plaintext-aware encryption
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 ๐ŸŽ‰! the new version arrives on September 1st! Don't want to wait?