For faster navigation, this Iframe is preloading the Wikiwand page for Particle in a ring.

Particle in a ring

In quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring (technically, whose configuration space is the circle ) is

Wave function

[edit]
Animated wave function of a “coherent” state consisting of eigenstates n=1 and n=2.

Using polar coordinates on the 1-dimensional ring of radius R, the wave function depends only on the angular coordinate, and so[1]

Requiring that the wave function be periodic in with a period (from the demand that the wave functions be single-valued functions on the circle), and that they be normalized leads to the conditions

,

and

Under these conditions, the solution to the Schrödinger equation is given by

Energy eigenvalues

[edit]

The energy eigenvalues are quantized because of the periodic boundary conditions, and they are required to satisfy

, or

The eigenfunction and eigenenergies are

where

Therefore, there are two degenerate quantum states for every value of (corresponding to ). Therefore, there are 2n+1 states with energies up to an energy indexed by the number n.

The case of a particle in a one-dimensional ring is an instructive example when studying the quantization of angular momentum for, say, an electron orbiting the nucleus. The azimuthal wave functions in that case are identical to the energy eigenfunctions of the particle on a ring.

The statement that any wavefunction for the particle on a ring can be written as a superposition of energy eigenfunctions is exactly identical to the Fourier theorem about the development of any periodic function in a Fourier series.

This simple model can be used to find approximate energy levels of some ring molecules, such as benzene.

Application

[edit]

In organic chemistry, aromatic compounds contain atomic rings, such as benzene rings (the Kekulé structure) consisting of five or six, usually carbon, atoms. So does the surface of "buckyballs" (buckminsterfullerene). This ring behaves like a circular waveguide, with the valence electrons orbiting in both directions. To fill all energy levels up to n requires electrons, as electrons have additionally two possible orientations of their spins. This gives exceptional stability ("aromatic"), and is known as the Hückel's rule.

Further in rotational spectroscopy this model may be used as an approximation of rotational energy levels.

See also

[edit]

References

[edit]
  1. ^ Cox, Heater. Problems and Solutions to accompany Physical Chemistry: a Molecular Approach. University Science Books. p. 141. ISBN 978-0935702439.
{{bottomLinkPreText}} {{bottomLinkText}}
Particle in a ring
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?