For faster navigation, this Iframe is preloading the Wikiwand page for Gravitational anomaly.

Gravitational anomaly

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Gravitational anomaly" – news · newspapers · books · scholar · JSTOR (November 2019) (Learn how and when to remove this message)
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (November 2019) (Learn how and when to remove this message)
Anomalies in the usual 4 spacetime dimensions arise from triangle Feynman diagrams

In theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields.[citation needed] The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with diffeomorphism anomaly, since general covariance is symmetry under coordinate reparametrization; i.e. diffeomorphism.

General covariance is the basis of general relativity, the classical theory of gravitation. Moreover, it is necessary for the consistency of any theory of quantum gravity, since it is required in order to cancel unphysical degrees of freedom with a negative norm, namely gravitons polarized along the time direction. Therefore, all gravitational anomalies must cancel out.

The anomaly usually appears as a Feynman diagram with a chiral fermion running in the loop (a polygon) with n external gravitons attached to the loop where where is the spacetime dimension.

Gravitational anomalies

[edit]

Consider a classical gravitational field represented by the vielbein and a quantized Fermi field . The generating functional for this quantum field is

where is the quantum action and the factor before the Lagrangian is the vielbein determinant, the variation of the quantum action renders

in which we denote a mean value with respect to the path integral by the bracket . Let us label the Lorentz, Einstein and Weyl transformations respectively by their parameters ; they spawn the following anomalies:

Lorentz anomaly

which readily indicates that the energy-momentum tensor has an anti-symmetric part.

Einstein anomaly

this is related to the non-conservation of the energy-momentum tensor, i.e. .

Weyl anomaly

which indicates that the trace is non-zero.

See also

[edit]

References

[edit]
  • Luis Álvarez-Gaumé; Edward Witten (1984). "Gravitational Anomalies". Nucl. Phys. B. 234 (2): 269. Bibcode:1984NuPhB.234..269A. doi:10.1016/0550-3213(84)90066-X.
  • Witten, Edward (1985). "Global gravitational anomalies". Commun. Math. Phys. 100 (2): 197–229. Bibcode:1985CMaPh.100..197W. doi:10.1007/BF01212448. S2CID 9145165.
[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
Gravitational anomaly
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?