For faster navigation, this Iframe is preloading the Wikiwand page for Uppendahl prism.

Uppendahl prism

.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important))You can help expand this article with text translated from the corresponding article in German. (September 2022) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this template: there are already 9,120 articles in the main category, and specifying|topic= will aid in categorization. Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article. You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing German Wikipedia article at [[:de:Uppendahl-Prisma]]; see its history for attribution. You may also add the template ((Translated|de|Uppendahl-Prisma)) to the talk page. For more guidance, see Wikipedia:Translation.

An Uppendahl prism [1] is an erecting prism, i.e. a special reflection prism that is used to invert an image (rotation by 180°). The erecting system consists of three partial prisms made of optical glass with a high refractive index cemented together to form a symmetric assembly and is [2] used in microscopy as well as in binoculars technology.

Leitz Wetzlar Trinovid 8×20 C binoculars expanded[3]

In the past the Uppendahl prism system, for example in the Trinovid binoculars series from Leitz (since 1986 Leica),[4] was commercially offered in some binoculars. The Trinovid series binoculars were introduced in 1958 and used at the time patented moving internal optical lenses between the ocular lens group and the prism assembly within the housing for focusing.[5] Like the much more common optical lenses located between the objective lens group and the prism assembly method, this central internal focussing method does not change the volume of the binoculars. Bausch & Lomb Elite and Browning 7×35 binoculars, both made in Japan during the late 1980s to early 1990s, also used Uppendahl prisms.[6]

In the early 2020s the commercial market share of Uppendahl prism type standard binoculars was nil.[7] The Leica Geovid R (laser) rangefinder binoculars series and 7×24 Rangemaster monocular using a (modified) Uppendahl prism system were still commercially available.[8]

Method of operation

Beam path in the Uppendahl prism system (top view); Main ray (red) and marginal rays (magenta / yellow), mirroring (blue), roof edge (green)

The Uppendahl prism system is composed of three cemented prisms, with two glass/air transition surfaces. On its way through the first prism, the bundle of rays (red) is first reflected on a surface that is coated with either a metallic or a dielectric coating (mirroring) and a total internal reflection face just like the one used in a Schmidt-Pechan cluster only the light enters and leaves through the opposite ends as used in the Uppendahl. The other reflections of the beam take place by means of loss-free total internal reflection. The second prism is a 90° reflection and shouldn't need a mirroring coating. In order to achieve a complete reversal of the image, a roof edge is ground into the third prism (green). Furthermore, the beam leaves the inversion system without any axial offset, which is why the Uppendahl prism is counted among the straight-vision roof prisms. The net effect of the six reflections (two reflections are on roof plains). Since the light is reflected an even number of times, this produces a 180° image rotation (without changing the image's handedness) and allows use of the prism as an image erecting system to flip the image both vertically and horizontally.

An advantage of this prism system is that the light beam only passes two transitions between air and glass, which minimizes losses in the form of Fresnel reflections. The relatively strong folding of the beam path in the Uppendahl prism, which is only comparable with the compact Schmidt-Pechan prism system, supports the construction of compact optical instruments with short overall lengths.

Problems with the Uppendahl prism

The Uppendahl roof prism system is from a purely technical point of view a rather complicated roof prism design. Light entering the Uppendahl design reflects more times and less efficient than in the Abbe-König prism design.[9]

Reflection losses

Total internal reflection does not occur. To mitigate this problem, a mirror coating is used on a surface. Typically an aluminum mirror coating (reflectivity of 87% to 93%) or silver mirror coating (reflectivity of 95% to 98%) is used.

The transmission of the prism can be further improved by using a dielectric coating rather than a metallic mirror coating. This causes the prism surfaces to act as a dielectric mirror. A well-designed dielectric coating can provide a reflectivity of over 99% across the visible light spectrum. This reflectivity is much improved compared to either an aluminum or silver mirror coating and the performance of the Uppendahl prism is similar to the Porro prism or the Abbe–Koenig prism.

The necessary mirror coating not only adds a manufacturing step, but it makes the Uppendahl roof prism lossier than the other image erectors using Porro prism or Abbe–Koenig prism that rely only on total internal reflections. A dielectric mirror coating is comparable in reflection effectivity, but makes the Uppendahl more expensive.

Phase correction

The Uppendahl furthermore shares the phase correction problems with other roof prisms. Uppendahl prism and other roof prism binoculars benefit from phase-correction coatings to minimize these problems and substantially improve resolution and contrast.[10]

Maximal light transmission

In order to achieve maximum light transmission, the Uppendahl prism system should be provided with an anti-reflective coating on the incidence and exit surfaces. In addition, a high-quality dielectric mirroring and phase correction coatings should be used on both roof surfaces.


  1. ^ D.R. Patent Nr. 195467, 7. Februar 1907
  2. ^ R. Liebmann: Geradsichtige Feldstecher-Prismenumkehrsysteme ohne oder mit nur geringem Achsversatz, In: Optik Nr. 26, Heft 3, 1967/1968, Seite 264.
  3. ^ US Patent US4087153A Binoculars with double hinge bridge and resilient biasing
  5. ^ US Patent US3484149A Center focusing prism binocular and reticle
  6. ^ "Image of an Uppendahl prism system used in Leitz Wetzlar, Trinovid 7×42B binoculars. The first Trinovid series featuring an Uppendahl prism system was made until 1990". 18 October 2012. Archived from the original on 2022-07-21. Retrieved 2022-07-21.
  7. ^ Binoculars dealer summary, showing 1,011 listed binoculars that all use other optical designs in September 2022
  8. ^ LEICA GEOVID R Technical Data, August 2022
  9. ^ Binocular prisms – why are they so weird and different? Bill Stent, October 21, 2019
  10. ^ Why do the best roof-prism binoculars need a phase-correction coating?

Further reading

  • H. Merlitz: Hand binoculars: function, performance, selection . Verlag Europa-Lehrmittel Haan-Gruiten 2019, ISBN 978-3-8085-5775-4 .
{{bottomLinkPreText}} {{bottomLinkText}}
Uppendahl prism
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.


Get ready for Wikiwand 2.0 ๐ŸŽ‰! the new version arrives on September 1st! Don't want to wait?