For faster navigation, this Iframe is preloading the Wikiwand page for RMG (program).

RMG (program)

RMG
Stable release
4.1
Written inC/C++
Operating systemLinux, Unix, Windows, OS X
LicenseGPL
Websitehttp://www.rmgdft.org/

RMG (Real Space MultiGrid) is an open source density functional theory electronic structure code distributed under the GNU General Public License.[1][2] It solves Kohn-Sham equations directly on a 3D real space grid without using basis set functions.[2] RMG is highly scalable; it has been run on supercomputers with thousands of CPU cores.

Description

[edit]

RMG's main feature is that it uses real-space mesh as a basis, rather plane waves or other types of basis set functions.[2] This formulation lends itself to a straightforward parallelization, because each processor can be assigned a region of space. This avoids the need for Fourier transforms, and makes RMG highly scalable. The multigrid method is used to solve Poisson equation and to accelerate convergence. Mehrstellen discretization, which is shorter ranged than the commonly used than central difference discretization, is used to represent the kinetic energy operator.[2] This decreases the cost of processor-to-processor communication, which is advantageous for the use on massively parallel supercomputers.

Domain decomposition is used to assign different regions of space to individual CPU cores or nodes. RMG scales nearly linearly up to 100k processor cores and 20k GPUs on Cray XK6.[3]

RMG was originally developed in 1993–1994 at North Carolina State University.[4] It was written in C with small parts being in FORTRAN. The current version uses a mixture of C and C++. MPI is used for inter-node communication and C++11 threads for intra-node parallelization. Other libraries used are Lapack, ScaLAPACK, FFTW, libxc and spglib.[3]

RMG runs on laptops, desktops, workstations, clusters or supercomputers. It can run on Linux, Unix, Windows and Mac OS X operating systems.[3]

See also

[edit]

References

[edit]
  1. ^ "RMG - A REAL SPACE MULTIGRID DFT CODE". sourceforge.net.
  2. ^ a b c d Briggs, E. L.; Sullivan, D. J.; Bernholc, J. (1995-08-15). "Large-scale electronic-structure calculations with multigrid acceleration". Physical Review B. 52 (8): R5471–R5474. arXiv:mtrl-th/9506006. doi:10.1103/physrevb.52.r5471. ISSN 0163-1829.
  3. ^ a b c Briggs, Emil. "rmgdft". GitHub.
  4. ^ Briggs, Emil. "Home". GitHub.
[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
RMG (program)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 ๐ŸŽ‰! the new version arrives on September 1st! Don't want to wait?