For faster navigation, this Iframe is preloading the Wikiwand page for Conservative extension.

Conservative extension

In mathematical logic, a conservative extension is a supertheory of a theory which is often convenient for proving theorems, but proves no new theorems about the language of the original theory. Similarly, a non-conservative extension is a supertheory which is not conservative, and can prove more theorems than the original.

More formally stated, a theory is a (proof theoretic) conservative extension of a theory if every theorem of is a theorem of , and any theorem of in the language of is already a theorem of .

More generally, if is a set of formulas in the common language of and , then is -conservative over if every formula from provable in is also provable in .

Note that a conservative extension of a consistent theory is consistent. If it were not, then by the principle of explosion, every formula in the language of would be a theorem of , so every formula in the language of would be a theorem of , so would not be consistent. Hence, conservative extensions do not bear the risk of introducing new inconsistencies. This can also be seen as a methodology for writing and structuring large theories: start with a theory, , that is known (or assumed) to be consistent, and successively build conservative extensions , , ... of it.

Recently, conservative extensions have been used for defining a notion of module for ontologies[citation needed]: if an ontology is formalized as a logical theory, a subtheory is a module if the whole ontology is a conservative extension of the subtheory.

An extension which is not conservative may be called a proper extension.

Examples

[edit]

Model-theoretic conservative extension

[edit]

With model-theoretic means, a stronger notion is obtained: an extension of a theory is model-theoretically conservative if and every model of can be expanded to a model of . Each model-theoretic conservative extension also is a (proof-theoretic) conservative extension in the above sense.[3] The model theoretic notion has the advantage over the proof theoretic one that it does not depend so much on the language at hand; on the other hand, it is usually harder to establish model theoretic conservativity.

See also

[edit]

References

[edit]
  1. ^ a b S. G. Simpson, R. L. Smith, "Factorization of polynomials and -induction" (1986). Annals of Pure and Applied Logic, vol. 31 (p.305)
  2. ^ Fernando Ferreira, A Simple Proof of Parsons' Theorem. Notre Dame Journal of Formal Logic, Vol.46, No.1, 2005.
  3. ^ Hodges, Wilfrid (1997). A shorter model theory. Cambridge: Cambridge University Press. p. 58 exercise 8. ISBN 978-0-521-58713-6.
[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
Conservative extension
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?