For faster navigation, this Iframe is preloading the Wikiwand page for Prism spectrometer.

Prism spectrometer

Setup of a prism spectrometer
Setup of a prism spectrometer (low angle with light)
Setup of a prism spectrometer (high angle with light)

A prism spectrometer is an optical spectrometer which uses a dispersive prism as its dispersive element. The prism refracts light into its different colors (wavelengths). The dispersion occurs because the angle of refraction is dependent on the refractive index of the prism's material, which in turn is slightly dependent on the wavelength of light that is traveling through it.


Light is emitted from a source such as a vapor lamp. A slit selects a thin strip of light which passes through the collimator where it gets parallelized. The aligned light then passes through the prism in which it is refracted twice (once when entering and once when leaving). Due to the nature of a dispersive element the angle with which light is refracted depends on its wavelength. This leads to a spectrum of thin lines of light, each being observable at a different angle. A lens or telescope is then used to form images of the original slit, with images formed using different wavelengths of light at different positions. If a real image is formed, it can be recorded on film or an image sensor, making the device a spectrograph.

Replacing the prism with a diffraction grating would result in a grating spectrometer. Optical gratings are less expensive, provide much higher resolution, and are easier to calibrate, due to their linear diffraction dependency. A prism's refraction angle varies nonlinearly with wavelength. On the other hand, gratings have significant intensity losses.



A prism spectrometer may be used to determine the composition of a material from its emitted spectral lines.

Measurement of refractive indices

A prism spectrometer may be used to measure the refractive index of a material if the wavelengths of the light used are known. The calibration of a prism spectrometer is carried out with known spectral lines from vapor lamps or laser light.

{{bottomLinkPreText}} {{bottomLinkText}}
Prism spectrometer
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.


Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?