For faster navigation, this Iframe is preloading the Wikiwand page for Axiom of power set.

Axiom of power set

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2020) (Learn how and when to remove this message)
The elements of the power set of the set {x, y, z} ordered with respect to inclusion.

In mathematics, the axiom of power set[1] is one of the Zermelo–Fraenkel axioms of axiomatic set theory. It guarantees for every set the existence of a set , the power set of , consisting precisely of the subsets of . By the axiom of extensionality, the set is unique.

The axiom of power set appears in most axiomatizations of set theory. It is generally considered uncontroversial, although constructive set theory prefers a weaker version to resolve concerns about predicativity.

Formal statement

[edit]

The subset relation is not a primitive notion in formal set theory and is not used in the formal language of the Zermelo–Fraenkel axioms. Rather, the subset relation is defined in terms of set membership, . Given this, in the formal language of the Zermelo–Fraenkel axioms, the axiom of power set reads:

where y is the power set of x, z is any element of y, w is any member of z.

In English, this says:

Given any set x, there is a set y such that, given any set z, this set z is a member of y if and only if every element of z is also an element of x.

Consequences

[edit]

The power set axiom allows a simple definition of the Cartesian product of two sets and :

Notice that

and, for example, considering a model using the Kuratowski ordered pair,

and thus the Cartesian product is a set since

One may define the Cartesian product of any finite collection of sets recursively:

The existence of the Cartesian product can be proved without using the power set axiom, as in the case of the Kripke–Platek set theory.

Limitations

[edit]

The power set axiom does not specify what subsets of a set exist, only that there is a set containing all those that do.[2] Not all conceivable subsets are guaranteed to exist. In particular, the power set of an infinite set would contain only "constructible sets" if the universe is the constructible universe but in other models of ZF set theory could contain sets that are not constructible.

References

[edit]
  1. ^ "Axiom of power set | set theory | Britannica". www.britannica.com. Retrieved 2023-08-06.
  2. ^ Devlin, Keith (1984). Constructibility. Berlin: Springer-Verlag. pp. 56–57. ISBN 3-540-13258-9. Retrieved 8 January 2023.
  • Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.

This article incorporates material from Axiom of power set on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

{{bottomLinkPreText}} {{bottomLinkText}}
Axiom of power set
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?