For faster navigation, this Iframe is preloading the Wikiwand page for Polynomially reflexive space.

Polynomially reflexive space

In mathematics, a polynomially reflexive space is a Banach space X, on which the space of all polynomials in each degree is a reflexive space.

Given a multilinear functional Mn of degree n (that is, Mn is n-linear), we can define a polynomial p as

(that is, applying Mn on the diagonal) or any finite sum of these. If only n-linear functionals are in the sum, the polynomial is said to be n-homogeneous.

We define the space Pn as consisting of all n-homogeneous polynomials.

The P1 is identical to the dual space, and is thus reflexive for all reflexive X. This implies that reflexivity is a prerequisite for polynomial reflexivity.

Relation to continuity of forms

[edit]

On a finite-dimensional linear space, a quadratic form xf(x) is always a (finite) linear combination of products xg(x) h(x) of two linear functionals g and h. Therefore, assuming that the scalars are complex numbers, every sequence xn satisfying g(xn) → 0 for all linear functionals g, satisfies also f(xn) → 0 for all quadratic forms f.

In infinite dimension the situation is different. For example, in a Hilbert space, an orthonormal sequence xn satisfies g(xn) → 0 for all linear functionals g, and nevertheless f(xn) = 1 where f is the quadratic form f(x) = ||x||2. In more technical words, this quadratic form fails to be weakly sequentially continuous at the origin.

On a reflexive Banach space with the approximation property the following two conditions are equivalent:[1]

  • every quadratic form is weakly sequentially continuous at the origin;
  • the Banach space of all quadratic forms is reflexive.

Quadratic forms are 2-homogeneous polynomials. The equivalence mentioned above holds also for n-homogeneous polynomials, n=3,4,...

Examples

[edit]

For the spaces, the Pn is reflexive if and only if n < p. Thus, no is polynomially reflexive. ( is ruled out because it is not reflexive.)

Thus if a Banach space admits as a quotient space, it is not polynomially reflexive. This makes polynomially reflexive spaces rare.

The Tsirelson space T* is polynomially reflexive.[2]

Notes

[edit]
  1. ^ Farmer 1994, page 261.
  2. ^ Alencar, Aron and Dineen 1984.

References

[edit]
  • Alencar, R., Aron, R. and S. Dineen (1984), "A reflexive space of holomorphic functions in infinitely many variables", Proc. Amer. Math. Soc. 90: 407–411.
  • Farmer, Jeff D. (1994), "Polynomial reflexivity in Banach spaces", Israel Journal of Mathematics 87: 257–273. MR1286830
  • Jaramillo, J. and Moraes, L. (2000), "Dualily and reflexivity in spaces of polynomials", Arch. Math. (Basel) 74: 282–293. MR1742640
  • Mujica, Jorge (2001), "Reflexive spaces of homogeneous polynomials", Bull. Polish Acad. Sci. Math. 49:3, 211–222. MR1863260
{{bottomLinkPreText}} {{bottomLinkText}}
Polynomially reflexive space
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?