For faster navigation, this Iframe is preloading the Wikiwand page for Order-4 icosahedral honeycomb.

Order-4 icosahedral honeycomb

Order-4 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,4}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {4}
Vertex figure {5,4}
Dual {4,5,3}
Coxeter group [3,5,4]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,4}.

Geometry

[edit]

It has four icosahedra {3,5} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-4 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,51,1}, Coxeter diagram, , with alternating types or colors of icosahedral cells. In Coxeter notation the half symmetry is [3,5,4,1+] = [3,51,1].

[edit]

It a part of a sequence of regular polychora and honeycombs with icosahedral cells: {3,5,p}

{3,5,p} polytopes
Space H3
Form Compact Noncompact
Name {3,5,3}

 
{3,5,4}
{3,5,5}
{3,5,6}
{3,5,7}
{3,5,8}
... {3,5,∞}
Image
Vertex
figure

{5,3}

{5,4}

{5,5}

{5,6}

{5,7}

{5,8}

{5,∞}

Order-5 icosahedral honeycomb

[edit]
Order-5 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,5}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {5}
Vertex figure {5,5}
Dual {5,5,3}
Coxeter group [3,5,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-5 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,5}. It has five icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-5 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

Order-6 icosahedral honeycomb

[edit]
Order-6 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,6}
{3,(5,∞,5)}
Coxeter diagrams
=
Cells {3,5}
Faces {3}
Edge figure {6}
Vertex figure {5,6}
Dual {6,5,3}
Coxeter group [3,5,6]
Properties Regular

In the geometry of hyperbolic 3-space, the order-6 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,6}. It has six icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-6 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

Order-7 icosahedral honeycomb

[edit]
Order-7 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,7}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {7}
Vertex figure {5,7}
Dual {7,5,3}
Coxeter group [3,5,7]
Properties Regular

In the geometry of hyperbolic 3-space, the order-7 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,7}. It has seven icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-7 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

Order-8 icosahedral honeycomb

[edit]
Order-8 icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,8}
Coxeter diagrams
Cells {3,5}
Faces {3}
Edge figure {8}
Vertex figure {5,8}
Dual {8,5,3}
Coxeter group [3,5,8]
Properties Regular

In the geometry of hyperbolic 3-space, the order-8 icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,8}. It has eight icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an order-8 pentagonal tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Infinite-order icosahedral honeycomb

[edit]
Infinite-order icosahedral honeycomb
Type Regular honeycomb
Schläfli symbols {3,5,∞}
{3,(5,∞,5)}
Coxeter diagrams
=
Cells {3,5}
Faces {3}
Edge figure {∞}
Vertex figure {5,∞}
{(5,∞,5)}
Dual {∞,5,3}
Coxeter group [∞,5,3]
[3,((5,∞,5))]
Properties Regular

In the geometry of hyperbolic 3-space, the infinite-order icosahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,5,∞}. It has infinitely many icosahedra, {3,5}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many icosahedra existing around each vertex in an infinite-order triangular tiling vertex arrangement.


Poincaré disk model
(Cell centered)

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(5,∞,5)}, Coxeter diagram, = , with alternating types or colors of icosahedral cells. In Coxeter notation the half symmetry is [3,5,∞,1+] = [3,((5,∞,5))].

See also

[edit]

References

[edit]
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)
[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
Order-4 icosahedral honeycomb
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?