For faster navigation, this Iframe is preloading the Wikiwand page for Order-4-5 pentagonal honeycomb.

Order-4-5 pentagonal honeycomb

Order-4-5 pentagonal honeycomb
Type Regular honeycomb
Schläfli symbol {5,4,5}
Coxeter diagrams
Cells {5,4}
Faces {5}
Edge figure {5}
Vertex figure {4,5}
Dual self-dual
Coxeter group [5,4,5]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-5 pentagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,4,5}.

Geometry

[edit]

All vertices are ultra-ideal (existing beyond the ideal boundary) with five order-4 pentagonal tilings existing around each edge and with an order-5 square tiling vertex figure.


Poincaré disk model

Ideal surface
[edit]

It a part of a sequence of regular polychora and honeycombs {p,4,p}:

{p,4,p} regular honeycombs
Space S3 Euclidean E3 H3
Form Finite Paracompact Noncompact
Name {3,4,3} {4,4,4} {5,4,5} {6,4,6} {7,4,7} {8,4,8} ...{∞,4,∞}
Image
Cells
{p,4}

{3,4}

{4,4}

{5,4}

{6,4}

{7,4}

{8,4}

{∞,4}
Vertex
figure
{4,p}

{4,3}

{4,4}

{4,5}

{4,6}

{4,7}

{4,8}

{4,∞}

Order-4-6 hexagonal honeycomb

[edit]
Order-4-6 hexagonal honeycomb
Type Regular honeycomb
Schläfli symbols {6,4,6}
{6,(4,3,4)}
Coxeter diagrams
=
Cells {6,4}
Faces {6}
Edge figure {6}
Vertex figure {4,6}
{(4,3,4)}
Dual self-dual
Coxeter group [6,4,6]
[6,((4,3,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-6 hexagonal honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,6}. It has six order-4 hexagonal tilings, {6,4}, around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an order-6 square tiling vertex arrangement.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {6,(4,3,4)}, Coxeter diagram, , with alternating types or colors of cells. In Coxeter notation the half symmetry is [6,4,6,1+] = [6,((4,3,4))].

Order-4-infinite apeirogonal honeycomb

[edit]
Order-4-infinite apeirogonal honeycomb
Type Regular honeycomb
Schläfli symbols {∞,4,∞}
{∞,(4,∞,4)}
Coxeter diagrams
Cells {∞,4}
Faces {∞}
Edge figure {∞}
Vertex figure {4,∞}
{(4,∞,4)}
Dual self-dual
Coxeter group [∞,4,∞]
[∞,((4,∞,4))]
Properties Regular

In the geometry of hyperbolic 3-space, the order-4-infinite apeirogonal honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {∞,4,∞}. It has infinitely many order-4 apeirogonal tiling {∞,4} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many hexagonal tilings existing around each vertex in an infinite-order square tiling vertex arrangement.


Poincaré disk model

Ideal surface

It has a second construction as a uniform honeycomb, Schläfli symbol {∞,(4,∞,4)}, Coxeter diagram, , with alternating types or colors of cells.

See also

[edit]

References

[edit]
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
  • Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)
[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
Order-4-5 pentagonal honeycomb
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?