For faster navigation, this Iframe is preloading the Wikiwand page for One Glass Solution.

One Glass Solution

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this message)

One Glass Solution[1] (OGS) is a touchscreen technology which reduces the thickness of a display by removing one of the layers of glass from the traditional capacitive touchscreen stack. The basic idea is to replace the touch module glass with a thin layer of insulating material. In general, there are two ways to achieve this.

One approach to OGS is called "sensor-on-lens” (also known as “touch-on-lens” or “sensor-on-glass”), with the "lens" in this case referring to the cover glass layer. Next, a layer of indium tin oxide (ITO) is deposited onto the back of the cover glass in a pattern to create electrodes to sense touch. A thin insulator layer is applied before a second ITO layer is deposited in a pattern creating electrodes running at right angles to the first layer. The assembly is then laminated onto a standard LCD panel.

The second approach is called "on-cell" capacitive touchscreen, with the cell referring to the LCD. In this process, a conductive layer of ITO is deposited directly onto the top layer of glass in the LCD panel in an electrode pattern. A thin insulating layer is applied before a second ITO layer is deposited in a pattern creating electrodes running at right angles to the first layer. Finally, a polarizing layer is applied on top, and the display is completed by adding the cover glass.

For now, it appears that the sensor-on-lens approach has advantages over on-cell solutions. The on-cell approach means that LCD makers would have to make two separate models of each panel: one with touch and one without. This could add cost to an industry that is already running on thin margins. The on-cell touch method is also limited to the size of the LCD panel, whereas sensor-on-lens modules can be larger than the underlying LCD panel, providing room for dedicated touch points that are found on many smartphone designs. Due to how sensor-on-lens modules are manufactured, the sensors are very fragile in comparison to on-cell modules. Damage to the cover glass will also impair the functionality of the touchscreen.

Successor

[edit]

Its successor is "in-cell" touch panels, where one of the conductive layers actually shares the same layer as the thin film transistors (TFTs) used to switch the display's sub-pixels on and off. (These transistors are fabricated directly on the semiconductor backplane of the display). The first products using "in-cell" touch technology have already (As of November 2012) appeared on the market, such as the Apple iPhone 5,[2] XOLO 8X-1000, vivo X3S.

References

[edit]
  1. ^ Poor, Alfred (17 October 2012). "How it works: The technology of touch screens". ComputerWorld. p. 3. Retrieved 17 December 2013.
  2. ^ http://www.flatpanelshd.com/focus.php?subaction=showfull&id=1348049303
{{bottomLinkPreText}} {{bottomLinkText}}
One Glass Solution
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?