For faster navigation, this Iframe is preloading the Wikiwand page for n! conjecture.

n! conjecture

In mathematics, the n! conjecture is the conjecture that the dimension of a certain bi-graded module of diagonal harmonics is n!. It was made by A. M. Garsia and M. Haiman and later proved by M. Haiman. It implies Macdonald's positivity conjecture about the Macdonald polynomials.

Formulation and background

[edit]

The Macdonald polynomials are a two-parameter family of orthogonal polynomials indexed by a positive weight λ of a root system, introduced by Ian G. Macdonald (1987). They generalize several other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials. They are known to have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

Macdonald (1988) introduced a new basis for the space of symmetric functions, which specializes to many of the well-known bases for the symmetric functions, by suitable substitutions for the parameters q and t.

In fact, we can obtain in this manner the Schur functions, the Hall–Littlewood symmetric functions, the Jack symmetric functions, the zonal symmetric functions, the zonal spherical functions, and the elementary and monomial symmetric functions.

The so-called q,t-Kostka polynomials are the coefficients of a resulting transition matrix. Macdonald conjectured that they are polynomials in q and t, with non-negative integer coefficients.

It was Adriano Garsia's idea to construct an appropriate module in order to prove positivity (as was done in his previous joint work with Procesi on Schur positivity of Kostka–Foulkes polynomials).

In an attempt to prove Macdonald's conjecture, Garsia & Haiman (1993) introduced the bi-graded module of diagonal harmonics and conjectured that the (modified) Macdonald polynomials are the Frobenius image of the character generating function of Hμ, under the diagonal action of the symmetric group.

The proof of Macdonald's conjecture was then reduced to the n! conjecture; i.e., to prove that the dimension of Hμ is n!. In 2001, Haiman proved that the dimension is indeed n! (see [4]).

This breakthrough led to the discovery of many hidden connections and new aspects of symmetric group representation theory, as well as combinatorial objects (e.g., insertion tableaux, Haglund's inversion numbers, and the role of parking functions in representation theory).

References

[edit]
  • Garsia, A. M.; Procesi, C. (1992). "On certain graded Sn-modules and the q-Kostka polynomials". Advances in Mathematics. 94 (1): 82–138. doi:10.1016/0001-8708(92)90034-I.
  • Garsia, A. M.; Haiman, M. (1993). "A graded representation model for the Macdonald polynomials". Proceedings of the National Academy of Sciences. 90 (8): 3607–3610. doi:10.1073/pnas.90.8.3607. PMC 46350. PMID 11607377.
  • Garsia, A. M.; Haiman, M. Orbit Harmonics and Graded Representations, Research Monograph. To appear as part of the collection published by the Lab. de. Comb. et Informatique Mathématique, edited by S. Brlek, U. du Québec á Montréal.
  • Haiman, M. (2001). "Hilbert schemes, polygraphs, and the Macdonald positivity conjecture". Journal of the American Mathematical Society. 14 (4): 941–1006. doi:10.1090/S0894-0347-01-00373-3.
  • Macdonald, I. G. (1988). "A new class of symmetric functions". Séminaire Lotharingien de Combinatoire. 20. Publ. I.R.M.A. Strasbourg: 131–171.
[edit]
{{bottomLinkPreText}} {{bottomLinkText}}
n! conjecture
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 ๐ŸŽ‰! the new version arrives on September 1st! Don't want to wait?