For faster navigation, this Iframe is preloading the Wikiwand page for Moving load.

Moving load

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Moving load" – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this message)
Pantograph
Pantograph
Train
Train
Rifle
Rifle
Examples of a moving load.
Force
Force
Oscillator
Oscillator
Mass
Mass
Types of a moving load.

In structural dynamics, a moving load changes the point at which the load is applied over time.[citation needed] Examples include a vehicle that travels across a bridge[citation needed] and a train moving along a track.[citation needed]

Properties

[edit]

In computational models, load is usually applied as

Numerous historical reviews of the moving load problem exist.[1][2] Several publications deal with similar problems.[3]

The fundamental monograph is devoted to massless loads.[4] Inertial load in numerical models is described in [5]

Unexpected property of differential equations that govern the motion of the mass particle travelling on the string, Timoshenko beam, and Mindlin plate is described in.[6] It is the discontinuity of the mass trajectory near the end of the span (well visible in string at the speed v=0.5c).[citation needed] The moving load significantly increases displacements.[citation needed] The critical velocity, at which the growth of displacements is the maximum, must be taken into account in engineering projects.[citation needed]

Structures that carry moving loads can have finite dimensions or can be infinite and supported periodically or placed on the elastic foundation.[citation needed]

Consider simply supported string of the length l, cross-sectional area A, mass density ρ, tensile force N, subjected to a constant force P moving with constant velocity v. The motion equation of the string under the moving force has a form[citation needed]

Displacements of any point of the simply supported string is given by the sinus series[citation needed]

where

and the natural circular frequency of the string

In the case of inertial moving load, the analytical solutions are unknown.[citation needed] The equation of motion is increased by the term related to the inertia of the moving load. A concentrated mass m accompanied by a point force P:[citation needed]

Convergence of the solution for different number of terms.

The last term, because of complexity of computations, is often neglected by engineers.[citation needed] The load influence is reduced to the massless load term.[citation needed] Sometimes the oscillator is placed in the contact point.[citation needed] Such approaches are acceptable only in low range of the travelling load velocity.[citation needed] In higher ranges both the amplitude and the frequency of vibrations differ significantly in the case of both types of a load.[citation needed]

The differential equation can be solved in a semi-analytical way only for simple problems.[citation needed] The series determining the solution converges well and 2-3 terms are sufficient in practice.[citation needed] More complex problems can be solved by the finite element method[citation needed] or space-time finite element method.[citation needed]

massless load inertial load
Vibrations of a string under a moving massless force (v=0.1c); c is the wave speed.
Vibrations of a string under a moving massless force (v=0.5c); c is the wave speed.
Vibrations of a string under a moving inertial force (v=0.1c); c is the wave speed.
Vibrations of a string under a moving inertial force (v=0.5c); c is the wave speed.

The discontinuity of the mass trajectory is also well visible in the Timoshenko beam.[citation needed] High shear stiffness emphasizes the phenomenon.[citation needed]

Vibrations of the Timoshenko beam: red lines - beam axes in time, black line - mass trajectory (w0- static deflection).

The Renaudot approach vs. the Yakushev approach

[edit]

Renaudot approach

[edit]
[citation needed]

Yakushev approach

[edit]
[citation needed]

Massless string under moving inertial load

[edit]

Consider a massless string, which is a particular case of moving inertial load problem. The first to solve the problem was Smith.[7] The analysis will follow the solution of Fryba.[4] Assuming ρ=0, the equation of motion of a string under a moving mass can be put into the following form[citation needed]

We impose simply-supported boundary conditions and zero initial conditions.[citation needed] To solve this equation we use the convolution property.[citation needed] We assume dimensionless displacements of the string y and dimensionless time τ:[citation needed]

Massless string and a moving mass - mass trajectory.

where wst is the static deflection in the middle of the string. The solution is given by a sum

where α is the dimensionless parameters :

Parameters a, b and c are given below

Massless string and a moving mass - mass trajectory, α=1.

In the case of α=1, the considered problem has a closed solution:[citation needed]

References

[edit]
  1. ^ Inglis, C.E. (1934). A Mathematical Treatise on Vibrations in Railway Bridges. Cambridge University Press.
  2. ^ Schallenkamp, A. (1937). "Schwingungen von Tragern bei bewegten Lasten". Ingenieur-Archiv (in German). 8 (3). Stringer Nature: 182–98. doi:10.1007/BF02085995. S2CID 122387048.
  3. ^ A.V. Pesterev; L.A. Bergman; C.A. Tan; T.C. Tsao; B. Yang (2003). "On Asymptotics of the Solution of the Moving Oscillator Problem" (PDF). J. Sound Vib. Vol. 260. pp. 519–36. Archived from the original (PDF) on 2012-10-18. Retrieved 2012-11-09.
  4. ^ a b Fryba, L. (1999). Vibrations of Solids and Structures Under Moving Loads. Thomas Telford House. ISBN 9780727727411.
  5. ^ Bajer, C.I.; Dyniewicz, B. (2012). Numerical Analysis of Vibrations of Structures Under Moving Inertial Load. Lecture Notes in Applied and Computational Mechanics. Vol. 65. Springer. doi:10.1007/978-3-642-29548-5. ISBN 978-3-642-29547-8.
  6. ^ B. Dyniewicz & C.I. Bajer (2009). "Paradox of the Particle's Trajectory Moving on a String". Arch. Appl. Mech. 79 (3): 213–23. Bibcode:2009AAM....79..213D. doi:10.1007/s00419-008-0222-9. S2CID 56291972.
  7. ^ C.E. Smith (1964). "Motion of a stretched string carrying a moving mass particle". J. Appl. Mech. Vol. 31, no. 1. pp. 29–37.
{{bottomLinkPreText}} {{bottomLinkText}}
Moving load
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?