For faster navigation, this Iframe is preloading the Wikiwand page for McKelvey–Schofield chaos theorem.

McKelvey–Schofield chaos theorem

The McKelvey–Schofield chaos theorem is a result in social choice theory. It states that if preferences are defined over a multidimensional policy space, then majority rule is in general unstable: there is no Condorcet winner. Furthermore, any point in the space can be reached from any other point by a sequence of majority votes.

The theorem can be thought of as showing that Arrow's impossibility theorem holds when preferences are restricted to be concave in . The median voter theorem shows that when preferences are restricted to be single-peaked on the real line, Arrow's theorem does not hold, and the median voter's ideal point is a Condorcet winner. The chaos theorem shows that this good news does not continue in multiple dimensions.

Definitions

[edit]

The theorem considers a finite number of voters, n, who vote for policies which are represented as points in Euclidean space of dimension m. Each vote is between two policies using majority rule. Each voter, i, has a utility function, Ui, which measures how much they value different policies.[clarification needed]

Euclidean preferences

[edit]

Richard McKelvey considered the case when preferences are "Euclidean metrics".[1] That means every voter's utility function has the form for all policies x and some xi, where d is the Euclidean distance and is a monotone decreasing function.

Under these conditions, there could be a collection of policies which don't have a Condorcet winner using majority rule. This means that, given a number of policies Xa, Xb, Xc, there could be a series of pairwise elections where:

  1. Xa wins over Xb
  2. Xb wins over Xc
  3. Xc wins over Xa

McKelvey proved that elections can be even more "chaotic" than that: If there is no equilibrium outcome[clarification needed] then any two policies, e.g. A and B, have a sequence of policies, , where each one pairwise wins over the other in a series of elections, meaning:

  1. A wins over X1
  2. X1 wins over X2
  3. ...
  4. Xs wins over B

This is true regardless of whether A would beat B or vice versa.

Example

[edit]
An example of McKelvey's theorem

The simplest illustrating example is in two dimensions, with three voters. Each voter will then have a maximum preferred policy, and any other policy will have a corresponding circular indifference curve centered at the preferred policy. If a policy was proposed, then any policy in the intersection of two voters indifference curves would beat it. Any point in the plane will almost always have a set of points that are preferred by 2 out of 3 voters.


Generalisations

[edit]

Norman Schofield extended the theorem to more general classes of utility functions, requiring only that they are differentiable. He also established conditions for the existence of a directed continuous path of policies, where each policy further along the path would win against one earlier.[2][3] Some of Schofield's proofs were later found to be incorrect by Jeffrey S. Banks, who corrected his proofs.[4][5]



References

[edit]
  1. ^ McKelvey, Richard D. (June 1976). "Intransitivities in Multidimensional Voting Models and Some Implications for Agenda Control". Journal of Economic Theory. 12 (3): 472–482. doi:10.1016/0022-0531(76)90040-5.
  2. ^ Schofield, N. (1 October 1978). "Instability of Simple Dynamic Games". The Review of Economic Studies. 45 (3): 575–594. doi:10.2307/2297259. JSTOR 2297259.
  3. ^ Cox, Gary W.; Shepsle, Kenneth A. (2007). "Majority Cycling and Agenda Manipulation: Richard McKelvey's Contributions and Legacy". In Aldrich, John Herbert; Alt, James E.; Lupia, Arthur (eds.). Positive Changes in Political Science. Analytical perspectives on politics. Ann Arbor, Michigan: University of Michigan Press. pp. 20–23. ISBN 978-0-472-06986-6.
  4. ^ Banks, Jeffrey S. (1995-01-01). "Singularity theory and core existence in the spatial model". Journal of Mathematical Economics. 24 (6): 523–536. doi:10.1016/0304-4068(94)00704-E. ISSN 0304-4068.
  5. ^ Saari, Donald G. (2008). "Deliver Us from the Plurality Vote". Disposing dictators, demystifying voting paradoxes: social choice analysis. Cambridge, New York: Cambridge University Press. ISBN 978-0-521-51605-1. OCLC 227031682.


{{bottomLinkPreText}} {{bottomLinkText}}
McKelvey–Schofield chaos theorem
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?