For faster navigation, this Iframe is preloading the Wikiwand page for Kapustinskii equation.

Kapustinskii equation

The Kapustinskii equation calculates the lattice energy UL for an ionic crystal, which is experimentally difficult to determine. It is named after Anatoli Fedorovich Kapustinskii who published the formula in 1956.[1]

where K = 1.20200×10−4 J·m·mol−1
d = 3.45×10−11 m
ν is the number of ions in the empirical formula,
z+ and z are the numbers of elementary charge on the cation and anion, respectively, and
r+ and r are the radii of the cation and anion, respectively, in meters.

The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%.

Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known. This is useful for rather complex ions like sulfate (SO2−
4
) or phosphate (PO3−
4
).

Derivation from the Born–Landé equation

[edit]

Kapustinskii originally proposed the following simpler form, which he faulted as "associated with antiquated concepts of the character of repulsion forces".[1][2]

Here, K' = 1.079×10−4 J·m·mol−1. This form of the Kapustinskii equation may be derived as an approximation of the Born–Landé equation, below.[1][2]

Kapustinskii replaced r0, the measured distance between ions, with the sum of the corresponding ionic radii. In addition, the Born exponent, n, was assumed to have a mean value of 9. Finally, Kapustinskii noted that the Madelung constant, M, was approximately 0.88 times the number of ions in the empirical formula.[2] The derivation of the later form of the Kapustinskii equation followed similar logic, starting from the quantum chemical treatment in which the final term is 1 − d/r0 where d is as defined above. Replacing r0 as before yields the full Kapustinskii equation.[1]

See also

[edit]

References

[edit]
  1. ^ a b c d Kapustinskii, A. F. (1956). "Lattice energy of ionic crystals". Quarterly Reviews, Chemical Society. 10 (3). Royal Society of Chemistry: 283–294. doi:10.1039/QR9561000283.
  2. ^ a b c Johnson, David Arthur (2002). Metals and Chemical Change. Vol. 1. Royal Society of Chemistry. pp. 135–136. ISBN 0854046658.

Literature

[edit]
  • Kapustinsky, A. (1933-01-01). "Allgemeine Formel für die Gitterenergie von Kristallen beliebiger Struktur". Zeitschrift für Physikalische Chemie (in German). 22B (1). Walter de Gruyter GmbH: 257. doi:10.1515/zpch-1933-2220. ISSN 2196-7156. S2CID 202045251.
  • A. F. Kapustinskii; Zhur. Fiz. Khim. Nr. 5, 1943, pp. 59 ff.


{{bottomLinkPreText}} {{bottomLinkText}}
Kapustinskii equation
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?