For faster navigation, this Iframe is preloading the Wikiwand page for Kaniadakis logistic distribution.

Kaniadakis logistic distribution

The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: "Kaniadakis logistic distribution" – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message)
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: "Kaniadakis logistic distribution" – news · newspapers · books · scholar · JSTOR (July 2022)
κ-Logistic distribution
Probability density function
Plot of the κ-Logistic distribution for typical κ-values and . The case corresponds to the ordinary Logistic distribution.
Cumulative distribution function
Plots of the cumulative κ-Logistic distribution for typical κ-values and . The case corresponds to the ordinary Logistic case.
Parameters
shape (real)
rate (real)
Support
PDF
CDF

The Kaniadakis Logistic distribution (also known as κ-Logisticdistribution) is a generalized version of the Logistic distribution associated with the Kaniadakis statistics. It is one example of a Kaniadakis distribution. The κ-Logistic probability distribution describes the population kinetics behavior of bosonic () or fermionic () character.[1]

Definitions

Probability density function

The Kaniadakis κ-Logistic distribution is a four-parameter family of continuous statistical distributions, which is part of a class of statistical distributions emerging from the Kaniadakis κ-statistics. This distribution has the following probability density function:[1]

valid for , where is the entropic index associated with the Kaniadakis entropy, is the rate parameter, , and is the shape parameter.

The Logistic distribution is recovered as

Cumulative distribution function

The cumulative distribution function of κ-Logistic is given by

valid for . The cumulative Logistic distribution is recovered in the classical limit .

Survival and hazard functions

The survival distribution function of κ-Logistic distribution is given by

valid for . The survival Logistic distribution is recovered in the classical limit .

The hazard function associated with the κ-Logistic distribution is obtained by the solution of the following evolution equation:

with , where is the hazard function:

The cumulative Kaniadakis κ-Logistic distribution is related to the hazard function by the following expression:

where is the cumulative hazard function. The cumulative hazard function of the Logistic distribution is recovered in the classical limit .

Related distributions

  • The survival function of the κ-Logistic distribution represents the κ-deformation of the Fermi-Dirac function, and becomes a Fermi-Dirac distribution in the classical limit .[1]
  • The κ-Logistic distribution is a generalization of the κ-Weibull distribution when .
  • A κ-Logistic distribution corresponds to a Half-Logistic distribution when , and .
  • The ordinary Logistic distribution is a particular case of a κ-Logistic distribution, when .

Applications

The κ-Logistic distribution has been applied in several areas, such as:

  • In quantum statistics, the survival function of the κ-Logistic distribution represents the most general expression of the Fermi-Dirac function, reducing to the Fermi-Dirac distribution in the limit .[2][3][4]

See also

References

  1. ^ a b c Kaniadakis, G. (2021-01-01). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743. Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
  2. ^ Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. (2011). "Kaniadakis statistics and the quantum H-theorem". Physics Letters A. 375 (3): 352–355. Bibcode:2011PhLA..375..352S. doi:10.1016/j.physleta.2010.11.045.
  3. ^ Kaniadakis, G. (2001). "H-theorem and generalized entropies within the framework of nonlinear kinetics". Physics Letters A. 288 (5–6): 283–291. arXiv:cond-mat/0109192. Bibcode:2001PhLA..288..283K. doi:10.1016/S0375-9601(01)00543-6. S2CID 119445915.
  4. ^ Lourek, Imene; Tribeche, Mouloud (2017). "Thermodynamic properties of the blackbody radiation: A Kaniadakis approach". Physics Letters A. 381 (5): 452–456. Bibcode:2017PhLA..381..452L. doi:10.1016/j.physleta.2016.12.019.
{{bottomLinkPreText}} {{bottomLinkText}}
Kaniadakis logistic distribution
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?