For faster navigation, this Iframe is preloading the Wikiwand page for Intensity (physics).

Intensity (physics)

In physics, the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m2), or kgs−3 in base units. Intensity is used most frequently with waves such as acoustic waves (sound) or electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler.

The word "intensity" as used here is not synonymous with "strength", "amplitude", "magnitude", or "level", as it sometimes is in colloquial speech.

Intensity can be found by taking the energy density (energy per unit volume) at a point in space and multiplying it by the velocity at which the energy is moving. The resulting vector has the units of power divided by area (i.e., surface power density). The intensity of a wave is proportional to the square of its amplitude. For example, the intensity of an electromagnetic wave is proportional to the square of the wave's electric field amplitude.

Mathematical description

If a point source is radiating energy in all directions (producing a spherical wave), and no energy is absorbed or scattered by the medium, then the intensity decreases in proportion to the distance from the object squared. This is an example of the inverse-square law.

Applying the law of conservation of energy, if the net power emanating is constant,

where

  • P is the net power radiated;
  • I is the intensity vector as a function of position;
  • the magnitude |I| is the intensity as a function of position;
  • dA is a differential element of a closed surface that contains the source.

If one integrates a uniform intensity, |I| = const., over a surface that is perpendicular to the intensity vector, for instance over a sphere centered around the point source, the equation becomes

where

  • |I| is the intensity at the surface of the sphere;
  • r is the radius of the sphere;
  • is the expression for the surface area of a sphere.

Solving for |I| gives

If the medium is damped, then the intensity drops off more quickly than the above equation suggests.

Anything that can transmit energy can have an intensity associated with it. For a monochromatic propagating electromagnetic wave, such as a plane wave or a Gaussian beam, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave, travelling in a non-magnetic material, is given by:

and the local intensity is obtained by multiplying this expression by the wave velocity,
where

For non-monochromatic waves, the intensity contributions of different spectral components can simply be added. The treatment above does not hold for arbitrary electromagnetic fields. For example, an evanescent wave may have a finite electrical amplitude while not transferring any power. The intensity should then be defined as the magnitude of the Poynting vector.[1]

Alternative definitions

In photometry and radiometry intensity has a different meaning: it is the luminous or radiant power per unit solid angle. This can cause confusion in optics, where intensity can mean any of radiant intensity, luminous intensity or irradiance, depending on the background of the person using the term. Radiance is also sometimes called intensity, especially by astronomers and astrophysicists, and in heat transfer.

See also

References

  1. ^ Paschotta, Rüdiger. "Optical Intensity". Encyclopedia of Laser Physics and Technology. RP Photonics.
{{bottomLinkPreText}} {{bottomLinkText}}
Intensity (physics)
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?