For faster navigation, this Iframe is preloading the Wikiwand page for Reflexive operator algebra.

Reflexive operator algebra

In functional analysis, a reflexive operator algebra A is an operator algebra that has enough invariant subspaces to characterize it. Formally, A is reflexive if it is equal to the algebra of bounded operators which leave invariant each subspace left invariant by every operator in A.

This should not be confused with a reflexive space.

Examples

[edit]

Nest algebras are examples of reflexive operator algebras. In finite dimensions, these are simply algebras of all matrices of a given size whose nonzero entries lie in an upper-triangular pattern.

In fact if we fix any pattern of entries in an n by n matrix containing the diagonal, then the set of all n by n matrices whose nonzero entries lie in this pattern forms a reflexive algebra.

An example of an algebra which is not reflexive is the set of 2 × 2 matrices

This algebra is smaller than the Nest algebra

but has the same invariant subspaces, so it is not reflexive.

If T is a fixed n by n matrix then the set of all polynomials in T and the identity operator forms a unital operator algebra. A theorem of Deddens and Fillmore states that this algebra is reflexive if and only if the largest two blocks in the Jordan normal form of T differ in size by at most one. For example, the algebra

which is equal to the set of all polynomials in

and the identity is reflexive.

Hyper-reflexivity

[edit]

Let be a weak*-closed operator algebra contained in B(H), the set of all bounded operators on a Hilbert space H and for T any operator in B(H), let

Observe that P is a projection involved in this supremum precisely if the range of P is an invariant subspace of .

The algebra is reflexive if and only if for every T in B(H):

We note that for any T in B(H) the following inequality is satisfied:

Here is the distance of T from the algebra, namely the smallest norm of an operator T-A where A runs over the algebra. We call hyperreflexive if there is a constant K such that for every operator T in B(H),

The smallest such K is called the distance constant for . A hyper-reflexive operator algebra is automatically reflexive.

In the case of a reflexive algebra of matrices with nonzero entries specified by a given pattern, the problem of finding the distance constant can be rephrased as a matrix-filling problem: if we fill the entries in the complement of the pattern with arbitrary entries, what choice of entries in the pattern gives the smallest operator norm?

Examples

[edit]
  • Every finite-dimensional reflexive algebra is hyper-reflexive. However, there are examples of infinite-dimensional reflexive operator algebras which are not hyper-reflexive.
  • The distance constant for a one-dimensional algebra is 1.
  • Nest algebras are hyper-reflexive with distance constant 1.
  • Many von Neumann algebras are hyper-reflexive, but it is not known if they all are.
  • A type I von Neumann algebra is hyper-reflexive with distance constant at most 2.

See also

[edit]

References

[edit]
  • William Arveson, Ten lectures on operator algebras, ISBN 0-8218-0705-6
  • H. Radjavi and P. Rosenthal, Invariant Subspaces, ISBN 0-486-42822-2
{{bottomLinkPreText}} {{bottomLinkText}}
Reflexive operator algebra
Listen to this article

This browser is not supported by Wikiwand :(
Wikiwand requires a browser with modern capabilities in order to provide you with the best reading experience.
Please download and use one of the following browsers:

This article was just edited, click to reload
This article has been deleted on Wikipedia (Why?)

Back to homepage

Please click Add in the dialog above
Please click Allow in the top-left corner,
then click Install Now in the dialog
Please click Open in the download dialog,
then click Install
Please click the "Downloads" icon in the Safari toolbar, open the first download in the list,
then click Install
{{::$root.activation.text}}

Install Wikiwand

Install on Chrome Install on Firefox
Don't forget to rate us

Tell your friends about Wikiwand!

Gmail Facebook Twitter Link

Enjoying Wikiwand?

Tell your friends and spread the love:
Share on Gmail Share on Facebook Share on Twitter Share on Buffer

Our magic isn't perfect

You can help our automatic cover photo selection by reporting an unsuitable photo.

This photo is visually disturbing This photo is not a good choice

Thank you for helping!


Your input will affect cover photo selection, along with input from other users.

X

Get ready for Wikiwand 2.0 🎉! the new version arrives on September 1st! Don't want to wait?